Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(5): e0229522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36069736

RESUMO

Kingella kingae is a leading cause of bone and joint infections and other invasive diseases in young children. A key K. kingae virulence determinant is a secreted exopolysaccharide that mediates resistance to serum complement and neutrophils and is required for full pathogenicity. The K. kingae exopolysaccharide is a galactofuranose homopolymer called galactan and is encoded by the pamABC genes in the pamABCDE locus. In this study, we sought to define the mechanism by which galactan is tethered on the bacterial surface, a prerequisite for mediating evasion of host immune mechanisms. We found that the pamD and pamE genes encode glycosyltransferases and are required for synthesis of an atypical lipopolysaccharide (LPS) O-antigen. The LPS O-antigen in turn is required for anchoring of galactan, a novel mechanism for association of an exopolysaccharide with the bacterial surface. IMPORTANCE Kingella kingae is an emerging pediatric pathogen and produces invasive disease by colonizing the oropharynx, invading the bloodstream, and disseminating to distant sites. This organism produces a uniquely multifunctional exopolysaccharide called galactan that is critical for virulence and promotes intravascular survival by mediating resistance to serum and neutrophils. In this study, we established that at least some galactan is anchored to the bacterial surface via a novel structural interaction with an atypical lipopolysaccharide O-antigen. Additionally, we demonstrated that the atypical O-antigen is synthesized by the products of the pamD and pamE genes, located downstream of the gene cluster responsible for galactan biosynthesis. This work addresses how the K. kingae exopolysaccharide can mediate innate immune resistance and advances understanding of bacterial exopolysaccharides and lipopolysaccharides.


Assuntos
Kingella kingae , Infecções por Neisseriaceae , Humanos , Criança , Pré-Escolar , Kingella kingae/química , Lipopolissacarídeos , Antígenos O/genética , Galactanos , Glicosiltransferases/genética , Infecções por Neisseriaceae/microbiologia
2.
Nat Microbiol ; 7(5): 630-639, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35505248

RESUMO

Recurrent urinary tract infections (rUTIs) are a major health burden worldwide, with history of infection being a significant risk factor. While the gut is a known reservoir for uropathogenic bacteria, the role of the microbiota in rUTI remains unclear. We conducted a year-long study of women with (n = 15) and without (n = 16) history of rUTI, from whom we collected urine, blood and monthly faecal samples for metagenomic and transcriptomic interrogation. During the study 24 UTIs were reported, with additional samples collected during and after infection. The gut microbiome of individuals with a history of rUTI was significantly depleted in microbial richness and butyrate-producing bacteria compared with controls, reminiscent of other inflammatory conditions. However, Escherichia coli gut and bladder populations were comparable between cohorts in both relative abundance and phylogroup. Transcriptional analysis of peripheral blood mononuclear cells revealed expression profiles indicative of differential systemic immunity between cohorts. Altogether, these results suggest that rUTI susceptibility is in part mediated through the gut-bladder axis, comprising gut dysbiosis and differential immune response to bacterial bladder colonization, manifesting in symptoms.


Assuntos
Infecções por Escherichia coli , Microbioma Gastrointestinal , Infecções Urinárias , Disbiose , Escherichia coli , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Leucócitos Mononucleares , Masculino , Infecções Urinárias/microbiologia
3.
Curr Opin Microbiol ; 54: 37-42, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035372

RESUMO

Kingella kingae is a gram-negative coccobacillus that is a fastidious commensal organism in the oropharynx and is being recognized increasingly as a common cause of osteoarticular infections and other invasive diseases in young children. The pathogenesis of K. kingae disease begins with bacterial adherence to respiratory epithelium, followed by translocation across the epithelial barrier, survival in the bloodstream, and dissemination to distant sites, including bones, joints, and the endocardium, among others. Characterization of the determinants of K. kingae pathogenicity has revealed a novel model of adherence that involves the interplay of type IV pili, a non-pilus adhesin, and a polysaccharide capsule and a novel model of resistance to serum killing and neutrophil killing that involves complementary functions of a polysaccharide capsule and an exopolysaccharide. These models likely apply to other bacterial pathogens as well.


Assuntos
Kingella kingae/patogenicidade , Infecções por Neisseriaceae/microbiologia , Fatores de Virulência/fisiologia , Adesinas Bacterianas/fisiologia , Aderência Bacteriana , Cápsulas Bacterianas/fisiologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sangue/microbiologia , Atividade Bactericida do Sangue , Pré-Escolar , Fímbrias Bacterianas/química , Regulação Bacteriana da Expressão Gênica , Humanos , Lactente , Kingella kingae/genética , Kingella kingae/crescimento & desenvolvimento , Infecções por Neisseriaceae/imunologia , Neutrófilos/imunologia , Polissacarídeos Bacterianos/fisiologia , Mucosa Respiratória/microbiologia , Virulência/genética , Fatores de Virulência/genética
4.
mBio ; 10(3)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239373

RESUMO

Bacterial pathogens have evolved strategies that enable them to evade neutrophil-mediated killing. The Gram-negative coccobacillus Kingella kingae is an emerging pediatric pathogen and is increasingly recognized as a common etiological agent of osteoarticular infections and bacteremia in young children. K. kingae produces a polysaccharide capsule and an exopolysaccharide, both of which are important for protection against complement-mediated lysis and are required for full virulence in an infant rat model of infection. In this study, we examined the role of the K. kingae polysaccharide capsule and exopolysaccharide in protection against neutrophil killing. In experiments with primary human neutrophils, we found that the capsule interfered with the neutrophil oxidative burst response and prevented neutrophil binding of K. kingae but had no effect on neutrophil internalization of K. kingae In contrast, the exopolysaccharide resisted the bactericidal effects of antimicrobial peptides and efficiently blocked neutrophil phagocytosis of K. kingae This work demonstrates that the K. kingae polysaccharide capsule and exopolysaccharide promote evasion of neutrophil-mediated killing through distinct yet complementary mechanisms, providing additional support for the K. kingae surface polysaccharides as potential vaccine antigens. In addition, these studies highlight a novel interplay between a bacterial capsule and a bacterial exopolysaccharide and reveal new properties for a bacterial exopolysaccharide, with potential applicability to other bacterial pathogens.IMPORTANCEKingella kingae is a Gram-negative commensal in the oropharynx and represents a leading cause of joint and bone infections in young children. The mechanisms by which K. kingae evades host innate immunity during pathogenesis of disease remain poorly understood. In this study, we established that the K. kingae polysaccharide capsule and exopolysaccharide function independently to protect K. kingae against reactive oxygen species (ROS) production, neutrophil phagocytosis, and antimicrobial peptides. These results demonstrate the intricacies of K. kingae innate immune evasion and provide valuable information that may facilitate development of a polysaccharide-based vaccine against K. kingae.


Assuntos
Evasão da Resposta Imune , Kingella kingae/química , Kingella kingae/imunologia , Neutrófilos/imunologia , Fagocitose , Polissacarídeos Bacterianos/imunologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Células Cultivadas , Humanos , Kingella kingae/patogenicidade , Infecções por Neisseriaceae/microbiologia , Explosão Respiratória , Virulência
5.
Infect Immun ; 86(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581191

RESUMO

Kingella kingae is a Gram-negative coccobacillus that is increasingly being recognized as an important cause of invasive disease in young children. The pathogenesis of K. kingae disease begins with colonization of the oropharynx, followed by invasion of the bloodstream, survival in the intravascular space, and dissemination to distant sites. Recent studies have revealed that K. kingae produces a number of surface factors that may contribute to the pathogenic process, including a polysaccharide capsule and an exopolysaccharide. In this study, we observed that K. kingae was highly resistant to the bactericidal effects of human serum complement. Using mutant strains deficient in expression of capsule, exopolysaccharide, or both in assays with human serum, we found that elimination of both capsule and exopolysaccharide was required for efficient binding of IgG, IgM, C4b, and C3b to the bacterial surface and for complement-mediated killing. Abrogation of the classical complement pathway using EGTA-treated human serum restored survival to wild-type levels by the mutant lacking both capsule and exopolysaccharide, demonstrating that capsule and exopolysaccharide promote resistance to the classical complement pathway. Consistent with these results, loss of both capsule and exopolysaccharide eliminated invasive disease in juvenile rats with an intact complement system but not in rats lacking complement. Based on these observations, we conclude that the capsule and the exopolysaccharide have important redundant roles in promoting survival of K. kingae in human serum. Each of these surface factors is sufficient by itself to fully prevent serum opsonin deposition and complement-mediated killing of K. kingae, ultimately facilitating intravascular survival and promoting K. kingae invasive disease.


Assuntos
Atividade Bactericida do Sangue/fisiologia , Kingella kingae , Infecções por Neisseriaceae/microbiologia , Polissacarídeos Bacterianos/farmacologia , Animais , Cápsulas Bacterianas/química , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas do Sistema Complemento , Humanos , Polissacarídeos Bacterianos/metabolismo , Ratos , Ratos Sprague-Dawley , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...