Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Neuroanat ; 129: 102237, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736441

RESUMO

The number of people diagnosed with metabolic syndrome (MetS) has increased dramatically to reach alarming proportions worldwide. The origin of MetS derives from bad eating habits and sedentary lifestyle. Most people consume foods high in carbohydrates and saturated fat. In recent years, it has been reported that alterations in insulin at the brain level could have an impact on the appearance of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, dementia, depression, and other types of disorders that compromise brain function. These alterations have been associated with damage to the structure and function of neurons located in the reptilian and limbic systems, a decrease in dendritic arborization and an exacerbated inflammatory state that impaired learning and memory and increased in the state of stress and anxiety. Although the molecular mechanisms induced by MetS to cause neurodegeneration are not fully understood. The aim of this study is to know the effect of the intake of hypercaloric diets on the structure and function of neurons located in the frontal cortex, hypothalamus and hippocampus and its impact on behavior in rats with metabolic syndrome. In conclusion, the present study illustrated that chronic exposure to hypercaloric diets, with a high content of sugars and saturated fatty acids, induces a proinflammatory state and exacerbates oxidative stress in brain regions such as the hypothalamus, hippocampus, and frontal cortex, leading to dysfunction. metabolism, neuronal damage, and recognition memory loss.


Assuntos
Doença de Alzheimer , Síndrome Metabólica , Animais , Ratos , Carboidratos , Dieta , Dieta Hiperlipídica , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Neurônios/metabolismo , Transtornos da Memória/metabolismo
2.
Neurochem Res ; 46(5): 1151-1165, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33559829

RESUMO

The consumption of foods rich in carbohydrates, saturated fat, and sodium, accompanied by a sedentary routine, are factors that contribute to the progress of metabolic syndrome (MS). In this way, they cause the accumulation of body fat, hypertension, dyslipidemia, and hyperglycemia. Additionally, MS has been shown to cause oxidative stress, inflammation, and death of neurons in the hippocampus. Consequently, spatial and recognition memory is affected. It has recently been proposed that metformin decavanadate (MetfDeca) exerts insulin mimetic effects that enhance metabolism in MS animals; however, what effects it can cause on the hippocampal neurons of rats with MS are unknown. The objective of the work was to evaluate the effect of MetfDeca on hippocampal neurodegeneration and recognition memory in rats with MS. Administration of MetfDeca for 60 days in MS rats improved object recognition memory (NORt). In addition, MetfDeca reduced markers of oxidative stress and hippocampal neuroinflammation. Accompanied by an increase in the density and length of the dendritic spines of the hippocampus of rats with MS. We conclude that MetfDeca represents an important therapeutic agent to treat MS and induce neuronal and cognitive restoration mechanisms.


Assuntos
Memória/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Metformina/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Vanadatos/uso terapêutico , Animais , Catalase/metabolismo , Combinação de Medicamentos , Hipocampo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/patologia , Masculino , Síndrome Metabólica/complicações , Síndrome Metabólica/patologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Superóxido Dismutase/efeitos dos fármacos
3.
Synapse ; 75(2): e22186, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32780904

RESUMO

Metabolic syndrome (MS) results from excessive consumption of high-calorie foods and sedentary lifestyles. Clinically, insulin resistance, abdominal obesity, hyperglycemia, dyslipidemia, and hypertension are observed. MS has been considered a risk factor in the development of dementia. In the brain, a metabolically impaired environment generates oxidative stress and excessive production of pro-inflammatory cytokines that deteriorate the morphology and neuronal function in the hippocampus, leading to cognitive impairment. Therapeutic alternatives suggest that phenolic compounds can be part of the treatment for neuropathies and metabolic diseases. In recent years, the use of Gallic Acid (GA) has demonstrated antioxidant and anti-inflammatory effects that contribute to neuroprotection and memory improvement in animal models. However, the effect of GA on hippocampal neurodegeneration and memory impairment under MS conditions is still unclear. In this work, we administered GA (20 mg/kg) for 60 days to rats with MS. The results show that GA treatment improved zoometric and biochemical parameters, as well as the recognition memory, in animals with MS. Additionally, GA administration increased hippocampal dendritic spines and decreased oxidative stress and inflammation. Our results show that GA treatment improves metabolism: reducing the oxidative and inflammatory environment that facilitates the recovery of the neuronal morphology in the hippocampus of rats with MS. Consequently, the recognition of objects by these animals, suggesting that GA could be used therapeutically in metabolic disorders that cause dementia.


Assuntos
Ácido Gálico/farmacologia , Hipocampo/efeitos dos fármacos , Síndrome Metabólica/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Catalase/efeitos dos fármacos , Catalase/metabolismo , Dendritos/efeitos dos fármacos , Dendritos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/metabolismo , Insulina/sangue , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/metabolismo , Memória/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
4.
Synapse ; 74(9): e22153, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32190918

RESUMO

Metabolic syndrome (MS) is a health problem that is characterized by body fat accumulation, hypertension, dyslipidemia, and hyperglycemia; recently, it has been demonstrated that MS also damages memory processes. The first-line drug in the treatment of MS and type 2 diabetes mellitus is metformin, which is an antihyperglycemic agent. This drug has been shown to produce neuroprotection and to improve memory processes. However, the mechanism involved in this neuroprotection is unknown. A 90-day administration of metformin improved the cognitive processes of rats with MS as evaluated by the novel object recognition test, and this finding could be explained by an increase in the neuronal spine density and spine length. We also found that metformin increased the immunoreactivity of synaptophysin, sirtuin-1, AMP-activated protein kinase, and brain-derived neuronal factor, which are important plasticity markers. We conclude that metformin is an important therapeutic agent that increases neural plasticity and protects cognitive processes. The use of this drug is important in the minimization of the damage caused by MS.


Assuntos
Hipocampo/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Síndrome Metabólica/fisiopatologia , Metformina/farmacologia , Plasticidade Neuronal , Fármacos Neuroprotetores/farmacologia , Reconhecimento Psicológico , Quinases Proteína-Quinases Ativadas por AMP , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Metformina/administração & dosagem , Metformina/uso terapêutico , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Proteínas Quinases/metabolismo , Ratos , Ratos Wistar , Sirtuína 1/metabolismo , Sinaptofisina/metabolismo
5.
Oxid Med Cell Longev ; 2018: 1358057, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154946

RESUMO

An important worldwide health problem as the result of current lifestyle is metabolic syndrome (MS). It has been shown that MS induced by a high-calorie diet (HCD) in rats produces cognitive deterioration in the novel object recognition test (NORt) and decreases synaptic connections and dendritic order in the hippocampus and temporal cortex. However, it is unknown whether MS induced by an HCD participates in the cognitive process observed with the injection of Aß1-42 into the hippocampus of rats as a model of Alzheimer disease (AD). The induction of MS in rats produces a deterioration in NORt; however, rats with MS injected with Aß1-42 show a major deterioration in the cognitive process. This event could be explained by the increment in the oxidative stress in both cases studied (MS and Aß1-42): together, the hippocampus and temporal cortex produce an enhancer effect. In the same way, we observed an increment in interleukin-1ß, TNF-α, and GFAP, indicative of exacerbated inflammatory processes by the combination of MS and Aß1-42. We can conclude that MS might play a key role in the apparition and development of cognitive disorders, including AD. We propose that metabolic theory is important to explain the apparition of cognitive diseases.


Assuntos
Peptídeos beta-Amiloides/uso terapêutico , Inflamação/patologia , Transtornos da Memória/etiologia , Síndrome Metabólica/complicações , Estresse Oxidativo/fisiologia , Peptídeos beta-Amiloides/farmacologia , Animais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Masculino , Transtornos da Memória/patologia , Ratos , Ratos Wistar
6.
Synapse ; 71(10): e21990, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28650104

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia and one of the most important causes of morbidity and mortality among the aging population. AD diagnosis is made post-mortem, and the two pathologic hallmarks, particularly evident in the end stages of the illness, are amyloid plaques and neurofibrillary tangles. Currently, there is no curative treatment for AD. Additionally, there is a strong relation between oxidative stress, metabolic syndrome, and AD. The high levels of circulating lipids and glucose imbalances amplify lipid peroxidation that gradually diminishes the antioxidant systems, causing high levels of oxidative metabolism that affects cell structure, leading to neuronal damage. Accumulating evidence suggests that AD is closely related to a dysfunction of both insulin signaling and glucose metabolism in the brain, leading to an insulin-resistant brain state. Four drugs are currently used for this pathology: Three FDA-approved cholinesterase inhibitors and one NMDA receptor antagonist. However, wide varieties of antioxidants are promissory to delay or prevent the symptoms of AD and may help in treating the disease. Therefore, therapeutic efforts to achieve attenuation of oxidative stress could be beneficial in AD treatment, attenuating Aß-induced neurotoxicity and improve neurological outcomes in AD. The term inflammaging characterizes a widely accepted paradigm that aging is accompanied by a low-grade chronic up-regulation of certain pro-inflammatory responses in the absence of overt infection, and is a highly significant risk factor for both morbidity and mortality in the elderly.

7.
Oxid Med Cell Longev ; 2016: 8725354, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069534

RESUMO

Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1ß, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1ß, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats.


Assuntos
Bebidas Energéticas/efeitos adversos , Etanol/efeitos adversos , Hipocampo/patologia , Inflamação/patologia , Estresse Oxidativo , Lobo Temporal/patologia , Animais , Caspase 3/metabolismo , Citocinas/metabolismo , Etanol/sangue , Proteína Glial Fibrilar Ácida/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Sinaptofisina/metabolismo
8.
Synapse ; 69(9): 421-33, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26073877

RESUMO

A high calorie intake can induce the appearance of the metabolic syndrome (MS), which is a serious public health problem because it affects glucose levels and triglycerides in the blood. Recently, it has been suggested that MS can cause complications in the brain, since chronic hyperglycemia and insulin resistance are risk factors for triggering neuronal death by inducing a state of oxidative stress and inflammatory response that affect cognitive processes. This process, however, is not clear. In this study, we evaluated the effect of the consumption of a high-calorie diet (HCD) on both neurodegeneration and spatial memory impairment in rats. Our results demonstrated that HCD (90 day consumption) induces an alteration of the main energy metabolism markers, indicating the development of MS in rats. Moreover, an impairment of spatial memory was observed. Subsequently, the brains of these animals showed activation of an inflammatory response (increase in reactive astrocytes and interleukin1-ß as well as tumor necrosis factor-α) and oxidative stress (reactive oxygen species and lipid peroxidation), causing a reduction in the number of neurons in the temporal cortex and hippocampus. Altogether, these results suggest that a HCD promotes the development of MS and contributes to the development of a neurodegenerative process and cognitive failure. In this regard, it is important to understand the relationship between MS and neuronal damage in order to prevent the onset of neurodegenerative disorders.


Assuntos
Dieta/efeitos adversos , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Doenças Metabólicas/metabolismo , Estresse Oxidativo/fisiologia , Lobo Temporal/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/patologia , Interleucina-1beta/metabolismo , Peroxidação de Lipídeos/fisiologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Doenças Metabólicas/etiologia , Doenças Metabólicas/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroimunomodulação/fisiologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Aprendizagem Espacial/fisiologia , Memória Espacial/fisiologia , Lobo Temporal/patologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Synapse ; 69(3): 103-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25522178

RESUMO

The cannabinoid CB1 (CB1R) and dopaminergic D2 (D2R) receptors modify GABAergic transmission in the globus pallidus. Although dopaminergic denervation produces changes in the expression and supersensitization of these receptors, the consequences of these changes on GABAergic neurotransmission are unknown. The aim of this study was to show the effects of CB1R and D2R activation and coactivation on the uptake and release of [(3) H]GABA in the globus pallidus of hemiparkinsonian rats as well as their effects on motor behavior. The activation of CB1R blocked GABA uptake and decreased GABA release in the globus pallidus in the dopamine denervated side, whereas the co-activation of CB1R-D2R increased GABA release and had no effect on GABA uptake. A microinjection of the CB1R agonist ACEA into the globus pallidus ipsilaterally to a 6-OHDA lesion potentiated turning behavior that was induced by methamphetamine. However, a microinjection of the D2R agonist quinpirole did not modify this behavior, and a microinjection of a mixture of CB1R and D2R agonists significantly potentiated turning behavior. The behavioral effects produced after the activation of the CB1R and the co-activation of CB1R and D2R can be explained by increased GABAergic neurotransmission produced by a block of GABA uptake and an increase in the release of GABA in the globus pallidus, respectively.


Assuntos
Neurônios GABAérgicos/metabolismo , Globo Pálido/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores de Dopamina D2/metabolismo , Transmissão Sináptica , Animais , Ácidos Araquidônicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Globo Pálido/efeitos dos fármacos , Globo Pálido/fisiologia , Masculino , Metanfetamina/farmacologia , Movimento , Oxidopamina/toxicidade , Quimpirol/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/agonistas , Receptores de Dopamina D2/agonistas , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...