Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 10(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681115

RESUMO

Blattella germanica presents a very complex symbiotic system, involving the following two kinds of symbionts: the endosymbiont Blattabacterium and the gut microbiota. Although the role of the endosymbiont has been fully elucidated, the function of the gut microbiota remains unclear. The study of the gut microbiota will benefit from the availability of insects deprived of Blattabacterium. Our goal is to determine the effect of the removal (or, at least, the reduction) of the endosymbiont population on the cockroach's fitness, in a normal gut microbiota community. For this purpose, we treated our cockroach population, over several generations, with rifampicin, an antibiotic that only affects the endosymbiont during its extracellular phase, and decreases its amount in the following generation. As rifampicin also affects gut bacteria that are sensitive to this antibiotic, the treatment was performed during the first 12 days of the adult stage, which is the period when the endosymbiont infects the oocytes and lacks bacteriocyte protection. We found that after this antibiotic treatment, the endosymbiont population remained extremely reduced and only the microbiota was able to recover, although it could not compensate for the endosymbiont role, and the host's fitness was drastically affected. This accomplished reduction, however, is not homogenous and requires further study to develop stable quasi-aposymbiotic cockroaches.

2.
J Pharm Biomed Anal ; 194: 113787, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33272789

RESUMO

The study of insect-associated microbial communities is a field of great importance in agriculture, principally because of the role insects play as pests. In addition, there is a recent focus on the potential of the insect gut microbiome in areas such as biotechnology, given some microorganisms produce molecules with biotechnological and industrial applications, and also in biomedicine, since some bacteria and fungi are a reservoir of antibiotic resistance genes (ARGs). To date, most studies aiming to characterize the role of the gut microbiome of insects have been based on high-throughput sequencing of the 16S rRNA gene and/or metagenomics. However, recently functional approaches such as metatranscriptomics, metaproteomics and metabolomics have also been employed. Besides providing knowledge about the taxonomic distribution of microbial populations, these techniques also reveal their functional and metabolic capabilities. This information is essential to gain a better understanding of the role played by microbes comprising the microbial communities in their hosts, as well as to indicate their possible exploitation. This review provides an overview of how far we have come in characterizing insect gut functionality through omics, as well as the challenges and future perspectives in this field.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , Insetos , Metagenômica , RNA Ribossômico 16S
3.
Sci Rep ; 10(1): 21058, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273496

RESUMO

Defence systems against microbial pathogens are present in most living beings. The German cockroach Blattella germanica requires these systems to adapt to unhealthy environments with abundance of pathogenic microbes, in addition to potentially control its symbiotic systems. To handle this situation, four antimicrobial gene families (defensins, termicins, drosomycins and attacins) were expanded in its genome. Remarkably, a new gene family (blattellicins) emerged recently after duplication and fast evolution of an attacin gene, which is now encoding larger proteins with the presence of a long stretch of glutamines and glutamic acids. Phylogenetic reconstruction, within Blattellinae, suggests that this duplication took place before the divergence of Blattella and Episymploce genera. The latter harbours a long attacin gene (pre-blattellicin), but the absence of the encoded Glx-region suggests that this element evolved recently in the Blattella lineage. A screening of AMP gene expression in available transcriptomic SR projects of B. germanica showed that, while some AMPs are expressed during almost the whole development, others are restricted to shorter periods. Blattellicins are highly expressed only in adult females. None of the available SR tissue projects could be associated with blattellicins' expression, suggesting that it takes place in other tissues, maybe the gut.


Assuntos
Blattellidae/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica , Genoma de Inseto , Filogenia , Proteínas Citotóxicas Formadoras de Poros/química , Domínios Proteicos
4.
NAR Genom Bioinform ; 2(3): lqaa058, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33575609

RESUMO

The study of bacterial symbioses has grown exponentially in the recent past. However, existing bioinformatic workflows of microbiome data analysis do commonly not integrate multiple meta-omics levels and are mainly geared toward human microbiomes. Microbiota are better understood when analyzed in their biological context; that is together with their host or environment. Nevertheless, this is a limitation when studying non-model organisms mainly due to the lack of well-annotated sequence references. Here, we present gNOMO, a bioinformatic pipeline that is specifically designed to process and analyze non-model organism samples of up to three meta-omics levels: metagenomics, metatranscriptomics and metaproteomics in an integrative manner. The pipeline has been developed using the workflow management framework Snakemake in order to obtain an automated and reproducible pipeline. Using experimental datasets of the German cockroach Blattella germanica, a non-model organism with very complex gut microbiome, we show the capabilities of gNOMO with regard to meta-omics data integration, expression ratio comparison, taxonomic and functional analysis as well as intuitive output visualization. In conclusion, gNOMO is a bioinformatic pipeline that can easily be configured, for integrating and analyzing multiple meta-omics data types and for producing output visualizations, specifically designed for integrating paired-end sequencing data with mass spectrometry from non-model organisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...