Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38969290

RESUMO

Previous studies have revealed the stimulatory and inhibitory actions of gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH) on the control of reproduction in European sea bass (Dicentrarchus labrax) and other vertebrates, respectively. However, information on the possible interactions between GnRH and GnIH on cell signaling is sparse in vertebrates. In the current study, we investigated if activation of sea bass GnIH receptor (GnIHR) can interfere with GnRH receptor II-1a (GnRHR-II-1a) involving the PKA pathway. Our results showed that GnIH and GnRH functioned via their cognate receptors, respectively. However, it appears that neither GnIH1 nor GnIH2 can block GnRH/GnRHR-II-1a-induced PKA signaling in sea bass. This is the first study to examine the potential interactions of GnIH with GnRH receptor signaling in teleosts. Further research seems necessary to shed light on unknown interactions in other signaling pathways and other GnIH/GnRH receptors involved in the physiological functions of these two relevant neuropeptides, not only in sea bass but also in other species.

2.
Gen Comp Endocrinol ; 350: 114477, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387532

RESUMO

Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.


Assuntos
Gonadotropinas , Hormônios Hipotalâmicos , Animais , Gonadotropinas/metabolismo , Vertebrados/metabolismo , Peptídeos/metabolismo , Hipotálamo/metabolismo , Reprodução/fisiologia , Peixes/metabolismo , Mamíferos/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo
3.
Front Endocrinol (Lausanne) ; 14: 1215915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654568

RESUMO

[This corrects the article DOI: 10.3389/fendo.2023.1160378.].

5.
J Comp Neurol ; 531(2): 314-335, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36273249

RESUMO

Spexin (Spx) is a recently characterized neuropeptide implicated in multiple physiological processes in vertebrates, including reproduction, food intake, and regulation of anxiety and stress. Two orthologs (Spx1 and Spx2) are present in some nonmammalian vertebrates, including teleosts. However, information on the distribution of Spx in the brain and its interactions with other neuroendocrine systems in fish is still scarce. In this work, we cloned and sequenced the sea bass (Dicentrarchus labrax) Spx1, which included a 27 aa signal peptide and a mature peptide of 14 aa that is C-terminal amidated. spx1 transcripts were higher in the diencephalon/caudal preoptic area/hypothalamus and medulla but were also detected in the olfactory bulbs, telencephalon/rostral preoptic area, optic tectum/tegmentum, cerebellum/pons, and pituitary. The immunohistochemical study revealed Spx1-immunoreactive (ir) cells in different nuclei of the preoptic area, habenula, prethalamus, mesencephalic tegmentum and in the proximal pars distalis (PPD) and pars intermedia of the pituitary. Spx1-ir fibers were widely distributed throughout the brain being particularly abundant in the midbrain and hindbrain, in close contact with tegmental gonadotropin-releasing hormone 2 (Gnrh2) cells and isthmic gonadotropin-inhibitory hormone (Gnih) cells of the secondary gustatory nucleus. Moreover, Gnih fibers were observed innervating Spx1-ir cells lying in several subdivisions of the magnocellular preoptic nucleus and in the lateral nucleus of the valvula, whereas ventrolateral prethalamic Spx1-ir cells received immunopositive Gnrh2 fibers. In the pituitary, Gnrh1-ir fibers were observed closely associated with Spx1-ir cells of the PPD. These results suggest that Spx1 could be involved in both reproductive and nonreproductive (i.e., food intake, behavior) functions in sea bass.


Assuntos
Bass , Neurônios , Hormônios Peptídicos , Animais , Bass/fisiologia , Encéfalo , Hormônio Liberador de Gonadotropina , Gonadotropinas , Colículos Superiores
6.
Front Endocrinol (Lausanne) ; 13: 982246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051397

RESUMO

Results of previous studies provided evidence for the existence of a functional gonadotropin-inhibitory hormone (GnIH) system in the European sea bass, Dicentrarchus labrax, which exerted an inhibitory action on the brain-pituitary-gonadal axis of this species. Herein, we further elucidated the intracellular signaling pathways mediating in sea bass GnIH actions and the potential interactions with sea bass kisspeptin (Kiss) signaling. Although GnIH1 and GnIH2 had no effect on basal CRE-luc activity, they significantly decreased forskolin-elicited CRE-luc activity in COS-7 cells transfected with their cognate receptor GnIHR. Moreover, an evident increase in SRE-luc activity was noticed when COS-7 cells expressing GnIHR were challenged with both GnIH peptides, and this stimulatory action was significantly reduced by two inhibitors of the PKC pathway. Notably, GnIH2 antagonized Kiss2-evoked CRE-luc activity in COS-7 cells expressing GnIHR and Kiss2 receptor (Kiss2R). However, GnIH peptides did not alter NFAT-RE-luc activity and ERK phosphorylation levels. These data indicate that sea bass GnIHR signals can be transduced through the PKA and PKC pathways, and GnIH can interfere with kisspeptin actions by reducing its signaling. Our results provide additional evidence for the understanding of signaling pathways activated by GnIH peptides in teleosts, and represent a starting point for the study of interactions with multiple neuroendocrine factors on cell signaling.


Assuntos
Bass , Animais , Bass/fisiologia , Células COS , Chlorocebus aethiops , Gonadotropina Coriônica , Kisspeptinas/metabolismo , Transdução de Sinais
7.
J Neuroendocrinol ; 34(5): e13069, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34913529

RESUMO

The field of fish gonadotropin-releasing hormones (GnRHs) is also celebrating its 50th anniversary this year. This review provides a chronological history of fish GnRH biology over the past five decades. It demonstrates how discoveries in fish regarding GnRH and GnRH receptor multiplicity, dynamic interactions between GnRH neurons, and additional neuroendocrine factors acting alongside GnRH, amongst others, have driven a paradigm shift in our understanding of GnRH systems and functions in vertebrates, including mammals. The role of technological innovations in enabling scientific discoveries is portrayed, as well as how fundamental research in fish GnRH led to translational outcomes in aquaculture. The interchange between fish and mammalian GnRH research is discussed, as is the value and utility of using fish models for advancing GnRH biology. Current challenges and future perspectives are presented, with the hope of expanding the dialogue and collaborations within the neuroendocrinology scientific community at large, capitalizing on diversifying model animals and the use of comparative strategies.


Assuntos
Hormônio Liberador de Gonadotropina , Neuroendocrinologia , Animais , Hormônio Liberador de Gonadotropina/fisiologia , Gonadotropinas , Mamíferos , Sistemas Neurossecretores
8.
J Comp Neurol ; 528(14): 2283-2307, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32103501

RESUMO

The retinas of nonmammalian vertebrates have cone photoreceptor mosaics that are often organized as highly patterned lattice-like distributions. In fishes, the two main lattice-like patterns are composed of double cones and single cones that are either assembled as interdigitized squares or as alternating rows. The functional significance of such orderly patterning is unknown. Here, the cone mosaics in two species of Soleidae flatfishes, the common sole and the Senegalese sole, were characterized and compared to those from other fishes to explore variability in cone patterning and how it may relate to visual function. The cone mosaics of the common sole and the Senegalese sole consisted of single, double, and triple cones in formations that differed from the traditional square mosaic pattern reported for other flatfishes in that no evidence of higher order periodicity was present. Furthermore, mean regularity indices for single and double cones were conspicuously lower than those of other fishes with "typical" square and row mosaics, but comparable to those of goldfish, a species with lattice-like periodicity in its cone mosaic. Opsin transcripts detected by quantitative polymerase chain reaction (sws1, sws2, rh2.3, rh2.4, lws, and rh1) were uniformly expressed across the retina of the common sole but, in the Senegalese sole, sws2, rh2.4, and rh1 were more prevalent in the dorsal retina. Microspectrophotometry revealed five visual pigments in the retina of the common sole [S(472), M(523), M(536), L(559), and rod(511)] corresponding to the repertoire of transcripts quantified except for sws1. Overall, these results indicate a loss of cone mosaic patterning in species that are primarily nocturnal or dwell in low light environments as is the case for the common sole and the Senegalese sole. The corollary is that lattice-like patterning of the cone mosaic may improve visual acuity. Ecological and physiological correlates derived from observations across multiple fish taxa that live in low light environments and do not possess lattice-like cone mosaics are congruent with this claim.


Assuntos
Padronização Corporal/fisiologia , Linguados/anatomia & histologia , Células Fotorreceptoras Retinianas Cones/citologia , Animais , Especificidade da Espécie
9.
J Comp Physiol B ; 190(2): 185-204, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32048006

RESUMO

In the fish retina, rods and cones are responsible for nocturnal vision and colour perception, respectively, and exhibit a repertoire of light-sensitive opsin photopigments that permits the adaptation to different photic environment. The metamorphosis of Senegalese sole determines a migration from pelagic to benthic environments, which is accompanied by essential changes in light intensity and spectrum. In this paper, we analysed the daily expression rhythms of rod opsin and five cone opsins during sole ontogeny in animals maintained under light-dark cycles of white (LDW), blue (LDB), red (LDR) and continuous white (LL) lights. We showed that the expression of visual opsins at early stages of development was enhanced under LDB in relation to LDW, LDR and LL. Moreover, daily rhythms of opsins were more robust under LDW and LDB conditions, in particular, before and after metamorphosis. A shift in the phase of opsin rhythms was observed between hatching and pre-metamorphosis. Metamorphosis was accompanied by a transient loss in the expression rhythms for most of the opsins, which were significantly influenced by light photoperiod and spectrum. In LDR, transcript levels and rhythms were markedly affected for the majority of the opsins analysed. Under LL, most of the opsins examined exhibited endogenous rhythms, although amplitudes and acrophases changed considerably. To the best of our knowledge, this is the first study on the daily expression rhythms of visual opsins during the ontogeny of a metamorphic flatfish and further emphasises the importance of using natural lighting conditions for proper development of Senegalese sole.


Assuntos
Ritmo Circadiano , Proteínas de Peixes/metabolismo , Linguados/fisiologia , Regulação da Expressão Gênica , Luz , Opsinas/metabolismo , Fotoperíodo , Animais , Comportamento Alimentar/fisiologia , Proteínas de Peixes/genética , Metamorfose Biológica , Atividade Motora/fisiologia , Opsinas/genética
10.
Gen Comp Endocrinol ; 291: 113422, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32032603

RESUMO

Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.


Assuntos
Peixes/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Animais , Encéfalo/metabolismo , Peixes/genética , Peixes/crescimento & desenvolvimento , Genoma , Hormônio Liberador de Gonadotropina/química , Sistemas Neurossecretores/metabolismo , Receptores LHRH/química , Receptores LHRH/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-30837949

RESUMO

Gonadotropin-inhibitory hormone, GnIH, is named because of its function in birds and mammals; however, in other vertebrates this function is not yet clearly established. More than half of the vertebrate species are teleosts. This group is characterized by the 3R whole genome duplication, a fact that could have been responsible for the great phenotypic complexity and great variability in reproductive strategies and sexual behavior. In this context, we revise GnIH cell bodies and fibers distribution in adult brains of teleosts, discuss its relationship with GnRH variants and summarize the few reports available about the ontogeny of the GnIH system. Considering all the information presented in this review, we propose that in teleosts, GnIH could have other functions beyond reproduction or act as an integrative signal in the reproductive process. However, further studies are required in order to clarify the role of GnIH in this group including its involvement in development, a key stage that strongly impacts on adult life.

12.
Gen Comp Endocrinol ; 273: 144-151, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29913169

RESUMO

Reproduction is regulated by the hypothalamic-pituitary-gonadal axis. The first neuropeptide identified that regulates this function was the decapeptide gonadotropin-releasing hormone (GnRH). Nowadays, in gnatostomates, a number of GnRH variants have been identified and classified into three different types: GnRH1, GnRH2, and GnRH3. Almost 30 years later, a new peptide that inhibits gonadotropin synthesis and secretion was discovered and thus named as gonadotropin-inhibitory hormone (GnIH). In avians and mammals, the interaction and regulation between GnRH and GnIH neurons has been widely studied; however, in other vertebrate groups there is little information about the relationship between these neurons. In previous works, three GnRH variants and a GnIH propeptide were characterized in Cichlasoma dimerus, and it was demonstrated that GnIH inhibited gonadotropins release in this species. Because no innervation was detected at the pituitary level, we speculate that GnIH would inhibit gonadotropins via GnRH. Thus, the aim of the present study was to evaluate the anatomical relationship between neurons expressing GnIH and the three GnRH variants by double labelling confocal immunofluorescence in adults of C. dimerus. Our results showed no apparent contacts between GnIH and GnRH1, fiber to fiber interactions between GnIH and GnRH2, and co-localization of GnIH and GnRH3 variant in neurons of the nucleus olfacto-retinalis. In conclusion, whether GnIH regulates the expression or secretion of GnRH1 in this species, an indirect modulation seems more plausible. Moreover, the present results suggest an interaction between GnIH and GnRH2 systems. Finally, new clues were provided to investigate the role of nucleus olfacto-retinalis cells and putative GnIH and GnRH3 interactions in the modulation of the reproductive network in teleost fish.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Ciclídeos/anatomia & histologia , Ciclídeos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Clima Tropical , Animais , Feminino , Masculino
13.
Chronobiol Int ; 35(7): 920-932, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29509082

RESUMO

This research aimed at investigating the light synchronization and endogenous origin of daily expression rhythms of eight key genes involved in epigenetic mechanisms (DNA methylation and demethylation) in zebrafish gonads. To this end, 84 zebrafish were distributed into six tanks, each one containing 14 fish (7 males and 7 females). Animals were subjected to 12 h light:12 h dark cycles (LD, lights on at ZT0 h) and fed randomly three times a day during the light phase. Locomotor activity rhythms were recorded in each tank for 20 days to test their synchronization to light. Then, zebrafish were fasted for one day and gonad samples were collected every 4 h during a 24 h cycle (ZT2, 6, 10, 14, 18, and 22 h). The results revealed that most of the epigenetic genes investigated exhibited a significant daily rhythm. DNA methylation genes (dnmt4, dnmt5, dnmt7) exhibited a daily rhythm of expression with a nocturnal acrophase (ZT14:01~ZT22:17 h), except for dnmt7 in males (ZT2:25 h). Similarly, all DNA demethylation genes (tet2, tdg, mb4, gadd45aa, and apobec2b) revealed the existence of statistically significant daily rhythms, except for gadd45aa in females. In females, tdg, mb4, and apobec2b presented a nocturnal peak (ZT14:20 ~ ZT22:04 h), whereas the tet2 acrophase was diurnal (ZT4:02 h). In males, tet2, tdg, and gadd45aa had nocturnal acrophases (ZT18:26~ZT21:31 h), whereas mb4 and apobec2b displayed diurnal acrophases (ZT5:28 and ZT4:02 h, respectively). To determine the endogenous nature of gene expression rhythms, another experiment was performed: 12 groups of 14 fish (7 males and 7 females) were kept in complete darkness (DD) and sampled every 4 h during a 48 h cycle (CT2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, and 46 h). Under DD, most of the genes (7 out of 8) presented circadian rhythmicity with different endogenous periodicities (tau), suggesting that the epigenetic mechanisms of DNA methylation and demethylation in the gonads follow an internal control, functioning as part of the translation network linking the environment into somatic signals in fish reproduction.


Assuntos
Ritmo Circadiano/genética , Metilação de DNA , Comportamento Alimentar/fisiologia , Expressão Gênica/fisiologia , Animais , Locomoção/genética , Atividade Motora/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
14.
J Comp Neurol ; 526(2): 349-370, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29044516

RESUMO

Recently, gonadotropin-inhibitory hormone (GnIH) has emerged as an important regulator of reproduction in birds and mammals. This RFamide neuropeptide has neuromodulatory functions and controls the synthesis and/or release of gonadotropin-releasing hormone (GnRH) and gonadotropins. Although teleosts represent about half of all living vertebrates, scientific and technological advances on the Gnih system in fish are scarce, contradictory, and inconclusive. Research on the fish Gnih system appears necessary to better clarify its role in the neuroendocrine and environmental control of vertebrate reproduction. In this study, we cloned a full-length sequence for the Gnih precursor of a flatfish, the Senegalese sole, coding for three putative Gnih peptides (ssGnih). We also generated specific antibodies against these ssGnih peptides, and used them to localize Gnih cells and their projections in the brain and pituitary. The expression of gnih was particularly evident in the diencephalon, but also in the olfactory bulbs/cerebral hemispheres, optic tectum/tegmentum, retina, and pituitary. The three antibodies used provided consistent results and showed that ssGnih-immunoreactive perikarya were present in the olfactory bulbs, ventral telencephalon, caudal preoptic area, dorsal tegmentum and rostral rhombencephalon, and their fibers innervated the brain and pituitary profusely. Intramuscular injection of ssGnih-3 provoked a significant reduction in gnrh-3 and lh expression, whereas ssGnih-2 treatment did not affect transcript levels of the main reproductive genes. Our results reveal the existence of a functional Gnih system in the sole brain, profusely innervating different brain areas and the pituitary gland, which could represent an important factor in the neuroendocrine control of flatfish reproduction.


Assuntos
Encéfalo/metabolismo , Clonagem Molecular/métodos , Linguados/metabolismo , Hormônios Hipotalâmicos/genética , Hormônios Hipotalâmicos/metabolismo , Sequência de Aminoácidos , Animais , Hormônios Hipotalâmicos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Filogenia , RNA Mensageiro/metabolismo , Distribuição Tecidual
15.
Artigo em Inglês | MEDLINE | ID: mdl-29163357

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that belongs to the RFamide peptide family and was first identified in the quail brain. From the discovery of avian GnIH, orthologous GnIH peptides have been reported in a variety of vertebrates, including mammals, amphibians, teleosts and agnathans, but also in protochordates. It has been clearly established that GnIH suppresses reproduction in avian and mammalian species through its inhibitory actions on brain GnRH and pituitary gonadotropins. In addition, GnIH also appears to be involved in the regulation of feeding, growth, stress response, heart function and social behavior. These actions are mediated via G protein-coupled GnIH receptors (GnIH-Rs), of which two different subtypes, GPR147 and GPR74, have been described to date. With around 30,000 species, fish represent more than one-half of the total number of recognized living vertebrate species. In addition to this impressive biological diversity, fish are relevant because they include model species with scientific and clinical interest as well as many exploited species with economic importance. In spite of this, the study of GnIH and its physiological effects on reproduction and other physiological processes has only been approached in a few fish species, and results obtained are in some cases conflicting. In this review, we summarize the information available in the literature on GnIH sequences identified in fish, the distribution of GnIH and GnIH-Rs in central and peripheral tissues, the physiological actions of GnIH on the reproductive brain-pituitary-gonadal axis, as well as other reported effects of this neuropeptide, and existing knowledge on the regulatory mechanisms of GnIH in fish.

16.
Artigo em Inglês | MEDLINE | ID: mdl-28188883

RESUMO

The seasonally changing photoperiod controls the timing of reproduction in most fish species, however, the transduction of this photoperiodic information to the reproductive axis is still unclear. This study explored the potential role of two candidate neuropeptide systems, gonadotropin-inhibitory hormone (Gnih) and kisspeptin, as mediators between the pineal organ (a principle transducer of photoperiodic information) and reproductive axis in male European sea bass, Dicentrarchus labrax. Two seven-day experiments of pinealectomy (Px) were performed, in March (end of reproductive season) and August (resting season). Effects of Px and season on the brain expression of gnih (sbgnih) and its receptor (sbgnihr), kisspeptins (kiss1, kiss2) and their receptors (kissr2, kissr3) and gonadotropin-releasing hormone (gnrh1, gnrh2, gnrh3) and the main brain receptor (gnrhr-II-2b) genes, plasma melatonin levels and locomotor activity rhythms were examined. Results showed that Px reduced night-time plasma melatonin levels. Gene expression analyses demonstrated a sensitivity of the Gnih system to Px in March, with a reduction in sbgnih in the mid-hindbrain, a region with bilateral connections to the pineal organ. In August, kiss2 levels increased in Px animals but not in controls. Significant differences in expression were observed for diencephalic sbgnih, sbgnihr, kissr3 and tegmental gnrh2 between seasons. Recordings of locomotor activity following surgery revealed a change from light-synchronised to free-running rhythmic behavior. Altogether, the Gnih and Kiss2 sensitivity to Px and seasonal differences observed for Gnih and its receptor, Gnrh2, and the receptor for Kiss2 (Kissr3), suggested they could be mediators involved in the relay between environment and seasonal reproduction.


Assuntos
Hormônio Liberador de Gonadotropina/genética , Kisspeptinas/genética , Neuropeptídeos/genética , Ácido Pirrolidonocarboxílico/análogos & derivados , Reprodução/genética , Animais , Bass/genética , Bass/fisiologia , Bass/cirurgia , Locomoção , Masculino , Sistemas Neurossecretores/cirurgia , Glândula Pineal/fisiologia , Glândula Pineal/cirurgia , Reprodução/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-28109838

RESUMO

The role of rearing temperature on fish development, sex differentiation and puberty has been largely addressed, but the impact of water temperature on the ontogeny of the main neuroendocrine systems controlling reproduction has received little attention. Gonadotropin-inhibitory hormone (GnIH) has been shown to act on gonadotropin-releasing hormone (GnRH) neurons and on the pituitary to inhibit gonadotropin release and synthesis in vertebrates, including sea bass, Dicentrarchus labrax. In the present study we investigated the effects of rearing temperature during the thermosensitive period (5-60days post-fertilization, dpf) on the expression of the GnIH gene (gnih) and its receptor (gnihr). Animals were maintained under two different conditions, low temperature (LT, 15°C) or high temperature (HT, 21°C), throughout the thermosensitive period and sampled from 5 to 360dpf at mid-light (ML) and mid-dark (MD). Our results showed significant effects of temperature on gnih and gnihr expression during the thermosensitive period, with higher transcript levels under LT condition. Some differences were also evident after the completion of the sex differentiation process. Moreover, we revealed daily variations in the developmental expression of gnih and gnihr, with higher diurnal mRNA levels at early stages (until 25dpf), and a shift to higher nocturnal expression levels at 300-360dpf, which corresponded with the beginning of the winter (reproductive season). To the best of our knowledge, this work represents the first study reporting the effects of rearing temperature on the transcription of gnih system genes, as well as its daily variations during the development of a fish species.


Assuntos
Bass/fisiologia , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Hipotalâmicos/metabolismo , Receptores de Neuropeptídeos/metabolismo , Processos de Determinação Sexual , Termotolerância , Animais , Aquicultura , Bass/crescimento & desenvolvimento , Ritmo Circadiano , Feminino , Proteínas de Peixes/genética , Temperatura Alta , Hormônios Hipotalâmicos/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , RNA Mensageiro/metabolismo , Receptores de Neuropeptídeos/genética , Maturidade Sexual , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
18.
PLoS One ; 11(10): e0165494, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27788270

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a neurohormone that suppresses reproduction by acting at both the brain and pituitary levels. In addition to the brain, GnIH may also be produced in gonads and can regulate steroidogenesis and gametogenesis. However, the function of GnIH in gonadal physiology has received little attention in fish. The main objective of this study was to evaluate the effects of peripheral sbGnih-1 and sbGnih-2 implants on gonadal development and steroidogenesis during the reproductive cycle of male sea bass (Dicentrarchus labrax). Both Gnihs decreased testosterone (T) and 11-ketotestosterone (11-KT) plasma levels in November and December (early- and mid-spermatogenesis) but did not affect plasma levels of the progestin 17,20ß-dihydroxy-4-pregnen-3-one (DHP). In February (spermiation), fish treated with sbGnih-1 and sbGnih-2 exhibited testicles with abundant type A spermatogonia and partial spermatogenesis. In addition, we determined the effects of peripheral Gnih implants on plasma follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) levels, as well as on brain and pituitary expression of the main reproductive hormone genes and their receptors during the spermiation period (February). Treatment with sbGnih-2 increased brain gnrh2, gnih, kiss1r and gnihr transcript levels. Whereas, both Gnihs decreased lhbeta expression and plasma Lh levels, and sbGnih-1 reduced plasmatic Fsh. Finally, through behavioral recording we showed that Gnih implanted animals exhibited a significant increase in diurnal activity from late spermatogenic to early spermiogenic stages. Our results indicate that Gnih may regulate the reproductive axis of sea bass acting not only on brain and pituitary hormones but also on gonadal physiology and behavior.


Assuntos
Bass/metabolismo , Hormônios Hipotalâmicos/farmacologia , Locomoção/efeitos dos fármacos , Esteroides/biossíntese , Testículo/efeitos dos fármacos , Testículo/metabolismo , Sequência de Aminoácidos , Animais , Gametogênese/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gonadotropinas/sangue , Hormônios Hipotalâmicos/química , Masculino , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Testículo/crescimento & desenvolvimento
19.
Biol Reprod ; 94(6): 121, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26984999

RESUMO

Gonadotropin-inhibitory hormone (GnIH) inhibits gonadotropin synthesis and release from the pituitary of birds and mammals. However, the physiological role of orthologous GnIH peptides on the reproductive axis of fish is still uncertain, and their actions on the main neuroendocrine systems controlling reproduction (i.e., GnRHs, kisspeptins) have received little attention. In a recent study performed in the European sea bass, we cloned a cDNA encoding a precursor polypeptide that contained C-terminal MPMRFamide (sbGnIH-1) and MPQRFamide (sbGnIH-2) peptide sequences, developed a specific antiserum against sbGnIH-2, and characterized its central and pituitary GnIH projections in this species. In this study, we analyzed the effects of intracerebroventricular injection of sbGnIH-1 and sbGnIH-2 on brain and pituitary expression of reproductive hormone genes (gnrh1, gnrh2, gnrh3, kiss1, kiss2, gnih, lhbeta, fshbeta), and their receptors (gnrhr II-1a, gnrhr II-2b, kiss1r, kiss2r, and gnihr) as well as on plasma Fsh and Lh levels. In addition, we determined the effects of GnIH on pituitary somatotropin (Gh) expression. The results obtained revealed the inhibitory role of sbGnIH-2 on brain gnrh2, kiss1, kiss2, kiss1r, gnih, and gnihr transcripts and on pituitary fshbeta, lhbeta, gh, and gnrhr-II-1a expression, whereas sbGnIH-1 only down-regulated brain gnrh1 expression. However, at different doses, central administration of both sbGnIH-1 and sbGnIH-2 decreased Lh plasma levels. Our work represents the first study reporting the effects of centrally administered GnIH in fish and provides evidence of the differential actions of sbGnIH-1 and sbGnIH-2 on the reproductive axis of sea bass, the main inhibitory role being exerted by the sbGnIH-2 peptide.


Assuntos
Bass/fisiologia , Hormônios Hipotalâmicos/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Reprodução , Animais , Expressão Gênica , Gonadotropinas/sangue , Injeções Intraventriculares , Masculino
20.
J Comp Neurol ; 524(1): 176-98, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26105807

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide that suppresses reproduction in birds and mammals by inhibiting GnRH and gonadotropin secretion. GnIH orthologs with a C-terminal LPXRFamide (LPXRFa) motif have been identified in teleost fish. Although recent work also suggests its role in fish reproduction, studies are scarce and controversial, and have mainly focused on cyprinids. In this work we cloned a full-length cDNA encoding an LPXRFa precursor in the European sea bass, Dicentrarchus labrax. In contrast to other teleosts, the sea bass LPXRFa precursor contains only two putative RFamide peptides, termed sbLPXRFa1 and sbLPXRFa2. sblpxrfa transcripts were expressed predominantly in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, retina, and gonads. We also developed a specific antiserum against sbLPXRFa2, which revealed sbLPXRFa-immunoreactive (ir) perikarya in the olfactory bulbs-terminal nerve, ventral telencephalon, caudal preoptic area, dorsal mesencephalic tegmentum, and rostral rhombencephalon. These sbLPXRFa-ir cells profusely innervated the preoptic area, hypothalamus, optic tectum, semicircular torus, and caudal midbrain tegmentum, but conspicuous projections also reached the olfactory bulbs, ventral/dorsal telencephalon, habenula, ventral thalamus, pretectum, rostral midbrain tegmentum, posterior tuberculum, reticular formation, and viscerosensory lobe. The retina, pineal, vascular sac, and pituitary were also targets of sbLPXRFa-ir cells. In the pituitary, this innervation was observed close to follicle-stimulating hormone (FSH), luteinizing hormone (LH) and growth hormone (GH) cells. Tract-tracing retrograde labeling suggests that telencephalic and preoptic sbLPXRFa cells might represent the source of pituitary innervation. The immunohistochemical distribution of sbLPXRFa cells and fibers suggest that LPXRFa peptides might be involved in some functions as well as reproduction, such as feeding, growth, and behavior.


Assuntos
Bass/metabolismo , Hormônios Peptídicos/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Bass/anatomia & histologia , Bass/genética , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Clonagem Molecular/métodos , Feminino , Imuno-Histoquímica/métodos , Masculino , Dados de Sequência Molecular , Hormônios Peptídicos/genética , Hormônios Peptídicos/imunologia , Filogenia , Hipófise/anatomia & histologia , Hipófise/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...