Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(33): e2301819, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37352307

RESUMO

In nanothermometry, the use of nanoparticles as thermal probes enables remote and minimally invasive sensing. In the biomedical context, nanothermometry has emerged as a powerful tool where traditional approaches, like infrared thermal sensing and contact thermometers, fall short. Despite the strides of this technology in preclinical settings, nanothermometry is not mature enough to be translated to the bedside. This is due to two major hurdles: the inability to perform 3D thermal imaging and the requirement for tools that are readily available in the clinics. This work simultaneously overcomes both limitations by proposing the technology of optical coherence thermometry (OCTh). This is achieved by combining thermoresponsive polymeric nanogels and optical coherence tomography (OCT)-a 3D imaging technology routinely used in clinical practice. The volume phase transition of the thermoresponsive nanogels causes marked changes in their refractive index, making them temperature-sensitive OCT contrast agents. The ability of OCTh to provide 3D thermal images is demonstrated in tissue phantoms subjected to photothermal processes, and its reliability is corroborated by comparing experimental results with numerical simulations. The results included in this work set credible foundations for the implementation of nanothermometry in the form of OCTh in clinical practice.


Assuntos
Nanopartículas , Termometria , Nanogéis , Reprodutibilidade dos Testes , Termômetros , Polímeros , Tomografia de Coerência Óptica/métodos
2.
Nanomedicine ; 43: 102556, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35390527

RESUMO

There is an urgent need for contrast agents to detect the first inflammation stage of atherosclerosis by cardiovascular optical coherence tomography (CV-OCT), the imaging technique with the highest spatial resolution and sensitivity of those used during coronary interventions. Gold nanoshells (GNSs) provide the strongest signal by CV-OCT. GNSs are functionalized with the cLABL peptide that binds specifically to the ICAM-1 molecule upregulated in the first stage of atherosclerosis. Dark field microscopy and CV-OCT are used to evaluate the specific adhesion of these functionalized GNSs to activated endothelial cells. This adhesion is investigated under static and dynamic conditions, for shear stresses comparable to those of physiological conditions. An increase in the scattering signal given by the functionalized GNSs attached to activated cells is observed compared to non-activated cells. Thus, cLABL-functionalized GNSs behave as excellent contrast agents for CV-OCT and promise a novel strategy for clinical molecular imaging of atherosclerosis.


Assuntos
Aterosclerose , Tomografia de Coerência Óptica , Aterosclerose/diagnóstico por imagem , Meios de Contraste , Células Endoteliais , Ouro , Humanos , Tomografia de Coerência Óptica/métodos
3.
ACS Photonics ; 9(2): 559-566, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35224134

RESUMO

Optical coherence tomography (OCT) is an imaging technique currently used in clinical practice to obtain optical biopsies of different biological tissues in a minimally invasive way. Among the contrast agents proposed to increase the efficacy of this imaging method, gold nanoshells (GNSs) are the best performing ones. However, their preparation is generally time-consuming, and they are intrinsically costly to produce. Herein, we propose a more affordable alternative to these contrast agents: Bi2Se3 nanostructured clusters with a desert rose-like morphology prepared via a microwave-assisted method. The structures are prepared in a matter of minutes, feature strong near-infrared extinction properties, and are biocompatible. They also boast a photon-to-heat conversion efficiency of close to 50%, making them good candidates as photothermal therapy agents. In vitro studies evidence the prowess of Bi2Se3 clusters as OCT contrast agents and prove that their performance is comparable to that of GNSs.

4.
Adv Healthc Mater ; 10(10): e2002186, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33594792

RESUMO

The unique combination of physical and optical properties of silica (core)/gold (shell) nanoparticles (gold nanoshells) makes them especially suitable for biomedicine. Gold nanoshells are used from high-resolution in vivo imaging to in vivo photothermal tumor treatment. Furthermore, their large scattering cross-section in the second biological window (1000-1700 nm) makes them also especially adequate for molecular optical coherence tomography (OCT). In this work, it is demonstrated that, after suitable functionalization, gold nanoshells in combination with clinical OCT systems are capable of imaging damage in the myocardium following an infarct. Since both inflammation and apoptosis are two of the main mechanisms underlying myocardial damage after ischemia, such damage imaging is achieved by endowing gold nanoshells with selective affinity for the inflammatory marker intercellular adhesion molecule 1 (ICAM-1), and the apoptotic marker phosphatidylserine. The results here presented constitute a first step toward a fast, safe, and accurate diagnosis of damaged tissue within infarcted hearts at the molecular level by means of the highly sensitive OCT interferometric technique.


Assuntos
Infarto do Miocárdio , Nanoconchas , Ouro , Humanos , Infarto , Imagem Molecular , Infarto do Miocárdio/diagnóstico por imagem
5.
Small ; 16(29): e1907171, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32548926

RESUMO

Fast and precise localization of ischemic tissues in the myocardium after an acute infarct is required by clinicians as the first step toward accurate and efficient treatment. Nowadays, diagnosis of a heart attack at early times is based on biochemical blood analysis (detection of cardiac enzymes) or by ultrasound-assisted imaging. Alternative approaches are investigated to overcome the limitations of these classical techniques (time-consuming procedures or low spatial resolution). As occurs in many other fields of biomedicine, cardiological preclinical imaging can also benefit from the fast development of nanotechnology. Indeed, bio-functionalized near-infrared-emitting nanoparticles are herein used for in vivo imaging of the heart after an acute myocardial infarct. Taking advantage of the superior acquisition speed of near-infrared fluorescence imaging, and of the efficient selective targeting of the near-infrared-emitting nanoparticles, in vivo images of the infarcted heart are obtained only a few minutes after the acute infarction event. This work opens an avenue toward cost-effective, fast, and accurate in vivo imaging of the ischemic myocardium after an acute infarct.


Assuntos
Infarto do Miocárdio , Nanopartículas , Humanos , Luminescência , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...