Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 932: 172915, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719035

RESUMO

The increasing trend regarding the use of plastics has arisen an exponential concern on the fate of their derived products to the environment. Among these derivatives, microplastics and nanoplastics (MNPs) have been featured for their associated environmental impact due to their low molecular size and high surface area, which has prompted their ubiquitous transference among all environmental interfaces. Due to the heterogenous chemical composition of MNPs, the study of these particles has focused a high number of studies, as a result of the myriad of associated physicochemical properties that contribute to the co-transference of a wide range of contaminants, thus becoming a major challenge for the scientific community. In this sense, both primary and secondary MNPs are well-known to be adscribed to industrial and urbanized areas, from which they are massively released to the environment through a multiscale level, involving the atmosphere, hydrosphere, and lithosphere. Consequently, much research has been conducted on the understanding of the interconnection between those interfaces, that motivate the spread of these contaminants to biological systems, being mostly represented by the biosphere, especially phytosphere and, finally, the anthroposphere. These findings have highlighted the potential hazardous risk for human health through different mechanisms from the environment, requiring a much deeper approach to define the real risk of MNPs exposure. As a result, there is a gap of knowledge regarding the environmental impact of MNPs from a high-throughput perspective. In this review, a metabolomics-based overview on the impact of MNPs to all environmental interfaces was proposed, considering this technology a highly valuable tool to decipher the real impact of MNPs on biological systems, thus opening a novel perspective on the study of these contaminants.


Assuntos
Metabolômica , Microplásticos , Microplásticos/toxicidade , Poluentes Ambientais , Nanopartículas/toxicidade , Monitoramento Ambiental
2.
Microorganisms ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543484

RESUMO

Nowadays, the discharge of wastewater is a global concern due to the damage caused to human and environmental health. Wastewater treatment has progressed to provide environmentally and economically sustainable technologies. The biological treatment of wastewater is one of the fundamental bases of this field, and the employment of new technologies based on granular biofilm systems is demonstrating success in tackling the environmental issues derived from the discharge of wastewater. The granular-conforming microorganisms must be evaluated as functional entities because their activities and functions for removing pollutants are interconnected with the surrounding microbiota. The deep knowledge of microbial communities allows for the improvement in system operation, as the proliferation of microorganisms in charge of metabolic roles could be modified by adjustments to operational conditions. This is why engineering must consider the intrinsic microbiological aspects of biological wastewater treatment systems to obtain the most effective performance. This review provides an extensive view of the microbial ecology of biological wastewater treatment technologies based on granular biofilms for mitigating water pollution.

3.
Microb Ecol ; 87(1): 14, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091083

RESUMO

Cold environments are the most widespread extreme habitats in the world. However, the role of wastewater treatment plants (WWTPs) in the cryosphere as hotspots in antibiotic resistance dissemination has not been well established. Hence, a snapshot of the resistomes of WWTPs in cold environments, below 5 °C, was provided to elucidate their role in disseminating antibiotic resistance genes (ARGs) to the receiving waterbodies. The resistomes of two natural environments from the cold biosphere were also determined. Quantitative PCR analysis of the aadA, aadB, ampC, blaSHV, blaTEM, dfrA1, ermB, fosA, mecA, qnrS, and tetA(A) genes indicated strong prevalences of these genetic determinants in the selected environments, except for the mecA gene, which was not found in any of the samples. Notably, high abundances of the aadA, ermB, and tetA(A) genes were found in the influents and activated sludge, highlighting that WWTPs of the cryosphere are critical hotspots for disseminating ARGs, potentially worsening the resistance of bacteria to some of the most commonly prescribed antibiotics. Besides, the samples from non-disturbed cold environments had large quantities of ARGs, although their ARG profiles were highly dissimilar. Hence, the high prevalences of ARGs lend support to the fact that antibiotic resistance is a common issue worldwide, including environmentally fragile cold ecosystems.


Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/farmacologia , Eliminação de Resíduos Líquidos , Genes Bacterianos/genética , Ecossistema , Resistência Microbiana a Medicamentos/genética , Esgotos/microbiologia
4.
Microorganisms ; 10(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36422310

RESUMO

Tomatoes are among the most consumed vegetables worldwide and represent a source of health-beneficial substances. Our study represents the first investigating the peel-associated epiphytic bacteria of red and purple (anthocyanin-rich) tomatoes subjected to organic and conventional farming systems. Proteobacteria was the dominant phylum (relative abundances 79-91%) in all experimental conditions. Enterobacteriaceae represented a large fraction (39.3-47.5%) of the communities, with Buttiauxella and Atlantibacter as the most represented genera. The core microbiota was composed of 59 operational taxonomic units (OTUs), including the majority of the most abundant ones. The occurrence of the most abundant OTUs differed among the experimental conditions. OTU 1 (Buttiauxella), OTU 2 (Enterobacteriales), and OTU 6 (Bacillales) were higher in red and purple tomatoes grown under organic farming. OTU 5 (Acinetobacter) had the highest abundance in red tomatoes subjected to organic farming. OTU 3 (Atlantibacter) was among the major OTUs in red tomatoes under both farming conditions. OTU 7 (Clavibacter) and OTU 8 (Enterobacteriaceae) had abundances ≥1% only in red tomatoes grown under conventional farming. PCA and clustering analysis highlighted a high similarity between the bacterial communities of red and purple tomatoes grown under organic farming. Furthermore, the bacterial communities of purple tomatoes grown under organic farming showed the lowest diversity and evenness. This work paves the way to understand the role of nutritional superior tomato genotypes, combined with organic farming, to modulate the presence of beneficial/harmful bacteria and supply healthier foods within a sustainable agriculture.

5.
Environ Pollut ; 314: 120316, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191797

RESUMO

Microplastics (MPs) provide a stable and protective habitat for diverse wastewater bacteria, including pathogenic and antibiotic-resistant species. Therefore, MPs may potentially transport these bacteria through wastewater treatment steps to the environment and far distances. This study investigated bacterial communities of MP-associated bacteria from different stages of municipal wastewater treatment processes to evaluate the potential negative effect of these biofilms on the environment. The results showed a high diversity of bacteria that were strongly attached to MPs. After all treatment steps, the core bacterial groups remained attached to MPs and escaped from the wastewater treatment plant with effluent water. Several pathogenic bacteria were identified in MP samples from all treatment steps, and most of them were found in effluent water. These data provide new insights into the possible impacts of wastewater-derived MPs on the environment. MP-associated biofilms were proved to be important sources of pathogens and antibiotic-resistant genes in natural waters.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Águas Residuárias , Plásticos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Bactérias , Antibacterianos , Proteínas de Membrana Transportadoras , Água
6.
Amino Acids ; 54(10): 1403-1419, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35612670

RESUMO

Granular activated sludge has been described as a promising tool in treating wastewater. However, the effect of high concentrations of sulphur amino acids, cysteine and methionine, in the evolution, development and stability of AGS-SBRs (aerobic granular sludge in sequential batch reactors) and their microbial communities is not well-established. Therefore, this study aimed to evaluate microbial communities' size, structure and dynamics in two AGS-SBRs fed with two different concentrations of amino acids (50 and 100 mg L-1 of both amino acids). In addition, the impact of the higher level of amino acids was also determined under an acclimatization or shock strategy. While N removal efficiency decreased with amino acids, the removal of the organic matter was generally satisfactory. Moreover, the abrupt presence of both amino acids reduced even further the removal performance of N, whereas under progressive adaptation, the removal yield was higher. Besides, excellent removal rates of cysteine and methionine elimination were found, in all stages below 80% of the influent values. Generally considered, the addition of amino acids weakly impacts the microbial communities' total abundances. On the contrary, the presence of amino acids sharply modulated the dominant bacterial structures. Furthermore, the highest amino acid concentration under the shock strategy resulted in a severe change in the structure of the microbial community. Acidovorax, Flavobacterium, Methylophilus, Stenotrophomonas and Thauera stood out as the prominent bacteria to cope with the high presence of cysteine and methionine. Hence, the AGS-SBR technology is valuable for treating influents enriched in sulphur Aa inclusively when a shock strategy was used.


Assuntos
Aminoácidos Sulfúricos , Microbiota , Esgotos/química , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Cisteína , Reatores Biológicos/microbiologia , Águas Residuárias , Metionina , Nitrogênio
7.
Microorganisms ; 10(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456840

RESUMO

Pontimonas is currently described as a genus including only one species of slightly halophilic marine bacteria. Although some works revealed its presence in some hypersaline environments, the information on its habitat preference is still scant. This work investigated Pontimonas presence in selected ponds of the Saline di Tarquinia marine saltern and in the seawater intake area. The two-year metabarcoding survey documented its constant presence along the ponds establishing the salinity gradient and in a distinct basin with permanent hypersaline conditions (BSB). Pontimonas was higher in the ponds than in the sea, whereas it had similar abundances in the sea and in the BSB. Its representative OTUs showed significant trends according to different parameters. Along the salinity gradient, OTU1 abundance increased with decreasing water temperatures and increasing rainfalls, and it showed a maximum in January; OTU2 increased with increasing BOD5 and it showed the highest abundances in the period August-October, and OTU 3194 increased at decreasing salinities. In BSB, a significant seasonal variation was shown by OTU 3194, which started increasing in spring to reach a maximum in summer. The results suggest that Pontimonas could easily settle in hypersaline habitats, having also broad euryhaline members and some possible extreme halophilic representatives.

8.
Molecules ; 28(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36615508

RESUMO

Polyphenols and their intermediate metabolites are natural compounds that are spread worldwide. Polyphenols are antioxidant agents beneficial for human health, but exposure to some of these compounds can be harmful to humans and the environment. A number of industries produce and discharge polyphenols in water effluents. These emissions pose serious environmental issues, causing the pollution of surface or groundwater (which are used to provide drinking water) or harming wildlife in the receiving ecosystems. The treatment of high-polyphenol-content waters is mandatory for many industries. Nowadays, biotechnological approaches are gaining relevance for their low footprint, high efficiency, low cost, and versatility in pollutant removal. Biotreatments exploit the diversity of microbial metabolisms in relation to the different characteristics of the polluted water, modifying the design and the operational conditions of the technologies. Microbial metabolic features have been used for full or partial polyphenol degradation since several decades ago. Nowadays, the comprehensive use of biotreatments combined with physical-chemical treatments has enhanced the removal rates to provide safe and high-quality effluents. In this review, the evolution of the biotechnological processes for treating high-polyphenol-content water is described. A particular emphasis is given to providing a general concept, indicating which bioprocess might be adopted considering the water composition and the economic/environmental requirements. The use of effective technologies for environmental phenol removal could help in reducing/avoiding the detrimental effects of these chemicals. In addition, some of them could be employed for the recovery of beneficial ones.


Assuntos
Polifenóis , Poluentes Químicos da Água , Humanos , Ecossistema , Biotecnologia , Reatores Biológicos , Água , Poluentes Químicos da Água/química
9.
Toxics ; 9(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922816

RESUMO

Two aerobic granular sludge (AGS) sequential batch reactors were operated at a mild (15 °C) temperature for 180 days. One of those bioreactors was exposed to a mixture of diclofenac, naproxen, trimethoprim, and carbamazepine. The AGS system, operating under pressure from emerging contaminants, showed a decrease in COD, BOD5, and TN removal capacity, mainly observed during the first 100 days, in comparison with the removal ratios detected in the control bioreactor. After an acclimatisation period, the removal reached high-quality effluent for COD and TN, close to 95% and 90%, respectively. In the steady-state period, trimethoprim and diclofenac were successfully removed with values around 50%, while carbamazepine and naproxen were more recalcitrant. The dominant bacterial OTUs were affected by the presence of a mixture of pharmaceutical compounds, under which the dominant phylotypes changed to OTUs classified among the Pseudomonas, Gemmobacter, and Comamonadaceae. The RT-qPCR and qPCR results showed the deep effects of pharmaceutical compounds on the number of copies of target genes. Statistical analyses allowed for linking the total and active microbial communities with the physico-chemical performance, describing the effects of pharmaceutical compounds in pollution degradation, as well as the successful adaptation of the system to treat wastewater in the presence of toxic compounds.

10.
Environ Sci Pollut Res Int ; 28(30): 41351-41364, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33783701

RESUMO

A sequential bed granular bioreactor was adapted to treat nitrate-polluted synthetic groundwater under anaerobic conditions and agitation with denitrification gas, achieving very efficient performance in total nitrogen removal at influent organic carbon concentrations of 1 g L-1 (80-90%) and 0.5 g L-1 (70-80%) sodium acetate, but concentrations below 0.5 g L-1 caused accumulation of nitrite and nitrate and led to system failure (30-40% removal). Biomass size and settling velocity were higher above 0.5 g L-1 sodium acetate. Trichosporonaceae dominated the fungal populations at all times, while a dominance of terrestrial group Thaumarchaeota and Acidovorax at 1 and 0.5 g L-1 passed to a domination of Methanobrevibacter and an unclassified Comamonadaceae clone for NaAc lower than 0.5 g L-1. The results obtained pointed out that the denitrifying granular sludge technology is a feasible solution for the treatment of nitrogen-contaminated groundwater, and that influent organic matter plays an important role on the conformation of microbial communities within it and, therefore, on the overall efficiency of the system.


Assuntos
Água Subterrânea , Esgotos , Reatores Biológicos , Desnitrificação , Nitrogênio/análise
11.
Bioresour Technol ; 300: 122650, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31911317

RESUMO

Three bioreactors were inoculated with Polar Arctic Circle-activated sludge, started-up and operated for 150 days at 8, 15 and 26 °C. Removal performances and granular conformation were similar at steady-state, but higher stability from start-up was found when operating at 8 °C. Important changes in the eukaryotic and prokaryotic populations caused by operational temperature were observed, being fungi dominant at 8 °C and 15 °C, while that ciliated organisms were found at 26 °C. The qPCR results showed higher copies of bacteria, and nitrifiers and denitrifying bacteria at cold temperature. The emission of nitrous oxide was linked directly with temperature and the involved microorganisms. This study represents a proof of concept in performance, greenhouse gas emission, granular formation and the role of the Polar Arctic Circle microbial population in AGS technology under different temperatures with the aim to understand the effect of seasonal o daily changes for implementation of AGS at full-scale.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Biomassa , Reatores Biológicos , Temperatura
12.
J Hazard Mater ; 376: 58-67, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31121453

RESUMO

The present work aims to use aerobic granular sludge technology for the treatment of wastewater containing high organic matter loads and a mixture of phenolic compounds normally present in olive washing water. The physicochemical performance of five bioreactors treating different concentrations of mixture of phenolic acid was monitored to observe the response of the systems. The bioreactors that operated at 50, 100 and 300 mg L-1 did not show relevant changes in terms of performance and granules properties, showing high ratio of phenolic compound removal ratio. However, the bioreactors operated with high phenolic compound concentrations showed low rates of organic matter, nitrogen and phenolic acid removal. In the same way, high concentrations of phenolic compounds determined the disintegration of the granular biomass. Next-generation sequencing studies showed a stable community structure in the bioreactors operating with 50, 100 and 300 mg L-1 of phenolic acids, with the genera Lampropedia and Arenimonas, family Xanthobacteraceae and Fungi Pezizomycotina as the dominant phylotypes. Conversely, the reactors operated at 500 and 600 mg L-1 of phenolic substances promoted the proliferation of Oligohymenophorea ciliates. Thus, this study suggests that aerobic granular sludge technology could be useful for the treatment of wastewaters such as olive washing water.


Assuntos
Reatores Biológicos/microbiologia , Microbiota , Fenóis/análise , Esgotos/microbiologia , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Aerobiose , Modelos Teóricos , Águas Residuárias/química
13.
Chemosphere ; 225: 73-82, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30861385

RESUMO

A lab-scale partial nitritation SBR was operated at 11 °C for 300 days used for the treatment of high-ammonium wastewater, which was inoculated with activated sludge from Rovaniemi WWTP (located in Polar Arctic Circle) in order to evaluate the influence the temperature on the performance, stability and dynamics of its microbial community. The partial nitritation achieved steady-state long-term operation and granulation process was not affected despite the low temperature and high ammonia concentration. The steady conditions were reached after 60 days of operation where the granular biomass was fully-formed and the 50%-50% of ammonium-nitrite effluent was successful achieved. Inoculation with cold adapted inoculum showed to yield bigger, denser granules with faster start-up without necessity of low temperature adaptation period. Next-generation sequences techniques showed that Trichosporonaceae and Xanthomonadaceae were the dominant OTUs in the mature granules. Our study could be useful in the implementation of full-scale partial nitritation reactors in cold regions such as Nordic countries for treating wastewater with high concentration of ammonium.


Assuntos
Reatores Biológicos/microbiologia , Temperatura Baixa , Nitritos/análise , Esgotos/microbiologia , Purificação da Água/métodos , Compostos de Amônio/análise , Biomassa , Países Escandinavos e Nórdicos , Trichosporon/metabolismo , Xanthomonadaceae/metabolismo
14.
Environ Sci Pollut Res Int ; 26(1): 514-527, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30406593

RESUMO

A membrane bioreactor and two hybrid moving bed bioreactor-membrane bioreactors were operated for the treatment of variable salinity wastewater, changing in cycles of 6-h wastewater base salinity and 6-h maximum salinity (4.5 and 8.5 mS cm-1 electric conductivity, which relate to 2.4 and 4.8 g L-1 NaCl, respectively), under different hydraulic retention times (6, 9.5, and 12 h) and total solids concentrations (2500 and 3500 mg L-1). The evaluation of the performance of the systems showed that COD removal performance was unaffected by salinity conditions, while BOD5 and TN removals were significantly higher in the low-salinity scenario. The microbial community structure showed differences with respect to salinity conditions for Eukarya, suggesting their higher sensitivity for salinity with respect to Prokarya, which were similar at both salinity scenarios. Nevertheless, the intra-OTU distribution of consistently represented OTUs of Eukarya and Prokarya was affected by the different salinity maximums. Multivariate redundancy analyses showed that several genera such as Amphiplicatus (0.01-5.90%), Parvibaculum (0.27-1.19%), Thiothrix (0.30-1.19%), Rhodanobacter (2.81-5.85%), Blastocatella (0.21-2.01%), and Nitrobacter (0.80-0.99%) were positively correlated with BOD5 and TN removal, and the ecological roles of these were proposed. All these genera were substantially more represented under low-salinity conditions (10-500% higher relative abundance), demonstrating that they might be of importance for the treatment of variable salinity wastewater. Evaluation of Eukarya OTUs showed that many of them lack a consistent taxonomic classification, which highlights the lack of knowledge of the diversity and ecological role of Eukaryotes in saline wastewater treatment processes. The results obtained will be of interest for future design and operation of salinity wastewater treatment systems particularly because little is known on the effect of variable salinity conditions in wastewater treatment.


Assuntos
Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Membranas Artificiais , Microbiota , Salinidade , Purificação da Água/métodos
15.
Chemosphere ; 204: 431-441, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29677650

RESUMO

Three aerobic granular sequencing batch reactors were inoculated using different inocula from Finland, Spain and a mix of both in order to investigate the effect over the degradation performance and the microbial community structure. The Finnish inoculum achieved a faster granulation and a higher depollution performance within the first two month of operation. However, after 90 days of operation, similar physico-chemical values were observed. On the other hand, the Real-time PCR showed that Archaea diminished from inoculum to granular biomass, while Bacteria and Fungi numbers remained stable. All granular biomass massive parallel sequencing studies were similar regardless of the inocula from which they formed, as confirmed by singular value decomposition principal coordinates analysis, expected effect size of OTUs, and ß-diversity analyses. Thermoproteaceae, Meganema and a Trischosporonaceae members were the dominant phylotypes for the three domains studied. The analysis of oligotype distribution demonstrated that a fungal oligotype was ubiquitous. The dominant OTUs of Bacteria were correlated with bioreactors performance. The results obtained determined that the microbial community structure of aerobic granular sludge was similar regardless of their inocula, showing that the granulation of biomass is related to several phylotypes. This will be of future importance for the implementation of aerobic granular sludge to full-scale systems.


Assuntos
Bactérias/metabolismo , Biomassa , Reatores Biológicos/microbiologia , Esgotos/química , Eliminação de Resíduos Líquidos , Aerobiose , Bactérias/crescimento & desenvolvimento , Temperatura Baixa , Esgotos/microbiologia , Temperatura
16.
Sci Rep ; 8(1): 2208, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396546

RESUMO

Seven full-scale biological wastewater treatment systems located in the Polar Arctic Circle region in Finland were investigated to determine their Archaea, Bacteria and Fungi community structure, and their relationship with the operational conditions of the bioreactors by the means of quantitative PCR, massive parallel sequencing and multivariate redundancy analysis. The results showed dominance of Archaea and Bacteria members in the bioreactors. The activated sludge systems showed strong selection of Bacteria but not for Archaea and Fungi, as suggested by diversity analyses. Core OTUs in influent and bioreactors were classified as Methanobrevibacter, Methanosarcina, Terrestrial Group Thaumarchaeota and unclassified Euryarchaeota member for Archaea; Trichococcus, Leptotrichiaceae and Comamonadaceae family, and Methylorosula for Bacteria and Trichosporonaceae family for Fungi. All influents shared core OTUs in all domains, but in bioreactors this did not occur for Bacteria. Oligotype structure of core OTUs showed several ubiquitous Fungi oligotypes as dominant in sewage and bioreactors. Multivariate redundancy analyses showed that the majority of core OTUs were related to organic matter and nutrients removal. Also, there was evidence of competition among Archaea and Fungi core OTUs, while all Bacteria OTUs were positively correlated among them. The results obtained highlighted interesting features of extremely cold temperature bioreactors.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Reatores Biológicos/microbiologia , Biota , Fungos/isolamento & purificação , Águas Residuárias/microbiologia , Archaea/classificação , Archaea/genética , Regiões Árticas , Bactérias/classificação , Bactérias/genética , Finlândia , Fungos/classificação , Fungos/genética , Metagenômica , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Esgotos/microbiologia , Purificação da Água
17.
FEMS Microbiol Lett ; 365(6)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438563

RESUMO

The discovering of anaerobic ammonium oxidation (anammox) process led to the development of autotrophic nitrogen removal systems for the treatment of effluents with low C:N rate. The anammox processes provide an efficient way to remove high concentrations of ammonium compounds from industrial and urban wastewater and covert them to dinitrogen. Nevertheless, recently obtained results suggest new ways for research on autotrophic nitrogen removal system including possibility for low temperature operation, adaptation to high organic matter loads and antibiotics inhibition effect. For these reasons, the prevalence and spatial distribution of anammox communities in autotrophic nitrogen removal wastewater treatment technologies, as well as their role in formation of fixed biofilms, are reviewed here in order to illustrate the present and future significance of these microorganisms in environmental biotechnology.


Assuntos
Compostos de Amônio/química , Nitrogênio/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água , Anaerobiose , Processos Autotróficos , Bactérias Anaeróbias/metabolismo , Biodegradação Ambiental , Biotecnologia , Humanos , Oxirredução , Purificação da Água/métodos
18.
Bioresour Technol ; 256: 22-29, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29428610

RESUMO

The aim of this work was to study the performance and microbial community structure of a polar Arctic Circle aerobic granular sludge (AGS) system operating at low temperature. Thus, an AGS bioreactor was operated at 7, 5 and 3 °C of temperature using a cold-adapted sludge from Lapland. At 5 °C, it yielded acceptable conversion rates, in terms of nitrogen, phosphorous, and organic matter. However, under 3 °C a negligible nitrogen and phosphorous removal performance was observed. Below 5 °C, scanning electron microscopy studies showed a wispy, non-dense and irregular granular structure with a strong outgrowth of filamentous. Moreover, Illumina next-generation sequencing showed a heterogeneous microbial population where SM1K20 (Archaea), Trichosporon domesticum (Fungus), and Zooglea, Arcobacter and Acinetobacter (Bacteria) were the dominant phylotypes. Our study suggests that AGS technologies inoculated with North Pole sludge could be operated, in cold regions for a period longer than 3 months (winter season) under 5 °C of water temperature.


Assuntos
Reatores Biológicos , Esgotos , Aerobiose , Temperatura Baixa , Nitrogênio , Temperatura , Eliminação de Resíduos Líquidos
19.
Bioresour Technol ; 239: 180-189, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28521227

RESUMO

An aerobic granular sludge system has been started-up and operated at 7°C temperature using cold-adapted activated sludge as inoculum. The system could form granular biomass due to batch operation allowing for just 5-3min of biomass sedimentation. Scanning electron microscopy showed that fungi helped in the granular biomass formation in the early stages of the granule formation. The removal performance of the system was of 92-95% in BOD5, 75-80% in COD, 70-76% in total nitrogen and 50-60% in total phosphorous. The bacterial community structure from cold-adapted activated sludge changed during the operational time, leading to a final configuration dominated by Microbacteriaceae members Microbacterium and Leucobacter, which were strongly correlated to biomass settling velocity and bioreactor performance, as suggested by multivariate redundancy analyses. This experiment showed that aerobic granular sludge systems could be successfully started-up and operated, with high performance, under low operational temperatures when using cold-adapted biomass as inoculum.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Temperatura Baixa , Finlândia , Temperatura
20.
Biotechnol Prog ; 32(5): 1254-1263, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27453498

RESUMO

Partial-nitritation processes are used for the biological treatment of high nitrogen-low organic carbon effluents, such as anaerobic digestion reject water. The release of certain products generated during the anaerobic digestion process, such as amino acids, could potentially reduce the performance of these partial-nitritation bioprocesses. To investigate this, four partial-nitritation biofilters were subjected to continuous addition of 0, 150, 300, and 500 mg L-1 cysteine amino acid in their influents. The addition of the amino acid had an impact over the performance of the partial-nitritation process and the bacterial community dynamics of the systems analyzed. Ammonium oxidation efficiency decreased with the addition of the amino acid, and a net nitrogen elimination occurred in presence of cysteine through the operation period. Bacterial community dynamics showed a decrease of Nitrosomonas species and a proliferation of putative heterotrophs with nitrification capacity, such as Pseudomonas, or denitrification capacity, such as Denitrobacter or Alicycliphilus. The addition of cysteine irreversible affected the bioreactors, which could not achieve the performance obtained before the addition of the amino acid. A mathematical predictive equation of the process performance depending on cysteine concentration added and operational time under such concentration was developed. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1254-1263, 2016.


Assuntos
Alicyclobacillus/metabolismo , Reatores Biológicos/microbiologia , Cisteína/metabolismo , Nitrosomonas/metabolismo , Pseudomonas/metabolismo , Nitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA