Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 377(6601): 80-86, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35617374

RESUMO

Activation of microglia in the spinal cord dorsal horn after peripheral nerve injury contributes to the development of pain hypersensitivity. How activated microglia selectively enhance the activity of spinal nociceptive circuits is not well understood. We discovered that after peripheral nerve injury, microglia degrade extracellular matrix structures, perineuronal nets (PNNs), in lamina I of the spinal cord dorsal horn. Lamina I PNNs selectively enwrap spinoparabrachial projection neurons, which integrate nociceptive information in the spinal cord and convey it to supraspinal brain regions to induce pain sensation. Degradation of PNNs by microglia enhances the activity of projection neurons and induces pain-related behaviors. Thus, nerve injury-induced degradation of PNNs is a mechanism by which microglia selectively augment the output of spinal nociceptive circuits and cause pain hypersensitivity.


Assuntos
Hiperalgesia , Microglia , Dor , Traumatismos dos Nervos Periféricos , Corno Dorsal da Medula Espinal , Animais , Matriz Extracelular/patologia , Hiperalgesia/etiologia , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Microglia/patologia , Dor/patologia , Dor/fisiopatologia , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/patologia , Corno Dorsal da Medula Espinal/fisiopatologia
2.
Brain Struct Funct ; 224(6): 2269-2280, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31098764

RESUMO

In cortical circuits, the vasoactive intestinal peptide (VIP+)-expressing GABAergic cells represent a heterogeneous but unique group of interneurons that is mainly specialized in network disinhibition. While the physiological properties and connectivity patterns have been elucidated in several types of VIP+ interneurons, little is known about the cell type-specific molecular repertoires important for selective targeting of VIP+ cell types and understanding their functions. Using patch-sequencing approach, we analyzed the transcriptomic profile of anatomically identified subiculum-projecting VIP+ GABAergic neurons that reside in the mouse hippocampal CA1 area, express muscarinic receptor 2 and coordinate the hippocampo-subicular interactions via selective innervation of interneurons in the CA1 area and of interneurons and pyramidal cells in subiculum. We explored the VIP+ cell gene expression within major gene families including ion channels, neurotransmitter receptors, neuromodulators, cell adhesion and myelination molecules. Among others, a large variety of genes involved in neuromodulatory signaling, including acetylcholine (Chrna4), norepinephrin (Adrb1), dopamine (Drd1), serotonin (Htr1d), cannabinoid (Cnr1), opioid (Oprd1, Oprl1) and neuropeptide Y (Npy1r) receptors was detected in these cells. Many genes that were enriched in other local VIP+ cell types, including the interneuron-selective interneurons and the cholecystokinin-coexpressing basket cells, were detected in VIP+ subiculum-projecting cells. In addition, the neuronatin (Nnat) and the Purkinje Cell Protein 4 (Pcp4) genes, which were detected previously in long-range projecting GABAergic neurons, were also common for the subiculum-projecting VIP+ cells. The expression of some genes was validated at the protein level, with proenkephalin being identified as an additional molecular marker of this VIP+ cell type. Together, our data indicate that the VIP+ subiculum-projecting cells share molecular identity with other VIP+ and long-range projecting GABAergic neurons, which can be important for specific function of these cells associated with their local and distant projection patterns.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Células Piramidais/metabolismo , Acetilcolina/metabolismo , Animais , Colecistocinina/metabolismo , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores Muscarínicos/metabolismo
3.
Nat Commun ; 9(1): 5043, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487571

RESUMO

GABAergic interneurons in the hippocampus provide for local and long-distance coordination of neurons in functionally connected areas. Vasoactive intestinal peptide-expressing (VIP+) interneurons occupy a distinct niche in circuitry as many of them specialize in innervating GABAergic cells, thus providing network disinhibition. In the CA1 hippocampus, VIP+ interneuron-selective cells target local interneurons. Here, we discover a type of VIP+ neuron whose axon innervates CA1 and also projects to the subiculum (VIP-LRPs). VIP-LRPs show specific molecular properties and target interneurons within the CA1 area but both interneurons and pyramidal cells within subiculum. They are interconnected through gap junctions but demonstrate sparse spike coupling in vitro. In awake mice, VIP-LRPs decrease their activity during theta-run epochs and are more active during quiet wakefulness but not coupled to sharp-wave ripples. Together, the data provide evidence for VIP interneuron molecular diversity and functional specialization in controlling cell ensembles along the hippocampo-subicular axis.


Assuntos
Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Hipocampo/citologia , Interneurônios/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Feminino , Masculino , Camundongos , Células Piramidais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...