Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 17(2): 298-310, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25296749

RESUMO

The effects of elevated CO2 and drought on ecophysiological parameters in grassland species have been examined, but few studies have investigated the effect of competition on those parameters under climate change conditions. The objective of this study was to determine the effect of elevated CO2 and drought on the response of plant water relations, gas exchange, chlorophyll a fluorescence and aboveground biomass in four grassland species, as well as to assess whether the type of competition modulates that response. Elevated CO2 in well-watered conditions increased aboveground biomass by augmenting CO2 assimilation. Drought reduced biomass by reducing CO2 assimilation rate via stomatal limitation and, when drought was more severe, also non-stomatal limitation. When plants were grown under the combined conditions of elevated CO2 and drought, drought limitation observed under ambient CO2 was reduced, permitting higher CO2 assimilation and consequently reducing the observed decrease in aboveground biomass. The response to climate change was species-specific and dependent on the type of competition. Thus, the response to elevated CO2 in well-watered grasses was higher in monoculture than in mixture, while it was higher in mixture compared to monoculture for forbs. On the other hand, forbs were more affected than grasses by drought in monoculture, while in mixture the negative effect of drought was higher in grasses than in forbs, due to a lower capacity to acquire water and mineral nutrients. These differences in species-level growth responses to CO2 and drought may lead to changes in the composition and biodiversity of the grassland plant community in future climate conditions.


Assuntos
Pradaria , Poaceae/fisiologia , Biomassa , Dióxido de Carbono , Clorofila/análogos & derivados , Clorofila/metabolismo , Mudança Climática , Secas , Festuca/fisiologia , Fluorescência , Transpiração Vegetal/fisiologia , Especificidade da Espécie , Estresse Fisiológico , Trifolium/fisiologia , Água
2.
Plant Cell Rep ; 19(11): 1127-1134, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30754781

RESUMO

Anion-exchange FPLC has been used to resolve the isoforms of glutamine synthetase (GS, EC 6.3.1.2) from Zea mays mesophyll (MC) and bundle sheath cells (BSC). Two different isoforms were detected in both types of photosynthetic cells. The predominantly active isoform was GS1 (61%) in MC and GS2 (67%) in BSC. The relative contribution of GS1 and GS2 to the overall GS activity in BSC in maize here reported resembles the proportion described for most C3 plants. Differences among these isoforms in terms of their susceptibility to phosphinothricin (PPT), an analogue of glutamate and known inhibitor of GS, were found. The GS1 isoenzyme from MC was the most sensitive form, being inhibited by 50% at approximately 2.0 µM DL-PPT, whereas the GS2 from BSC presented the highest tolerance to the inhibitor (I50=30 µM). The transferase-to-semibiosynthetic activity ratio for the MC isoforms, which was higher than the ratio for the BSC isoforms, and the differences shown by the isoforms in susceptibility to PPT predict important differences in the biochemical properties and regulation of GS isoenzymes. In this regard, the cytoplasmic isoenzymes, and especially the one in MC, due to its relatively high contribution to mesophyll cell GS activity, could play a vital role in nitrogen metabolism in maize.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...