Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 256(2): 20, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35751708

RESUMO

MAIN CONCLUSION: Growth was not strictly linked to photosynthesis performance under salinity conditions in quinoa. Other key traits, which were varieties-specific, rather than photosynthesis explained better growth performance. Phenotyping for salinity stress tolerance in quinoa is of great interest to select traits contributing to overall salinity tolerance and to understand the response mechanisms to salinity at a whole plant level. The objective of this work was to dissect the responses of specific traits and analyse relations between these traits to better understand growth response under salinity conditions in quinoa. Growth response to salinity was mostly related to differences in basal values of biomass, being reduced the most in plants with higher basal biomass. Regarding the relationship between growth and specific traits, in Puno variety, better photosynthetic performance was related to a better maintenance of growth. Nevertheless, in the rest of the varieties other traits rather than photosynthesis could better explain growth response. In this way, the development of succulence in F-16 and Collana varieties, also the osmotic adjustment but in smaller dimensions in Pasankalla, Marisma and S-15-15 helped to maintain better growth. Besides, smaller increases of Cl- could have caused a limited nitrate uptake reducing more growth in Vikinga. Ascorbate was considered a key trait as a noticeable fall of it was also related to higher reductions in growth in Titicaca. These results suggest that, due to the genetic variability of quinoa and the complexity of salinity tolerance, no unique and specific traits should be taken into consideration when using phenotyping for analysing salinity tolerance in quinoa.


Assuntos
Chenopodium quinoa , Tolerância ao Sal , Chenopodium quinoa/fisiologia , Fotossíntese , Salinidade , Estresse Salino , Tolerância ao Sal/genética
2.
Front Plant Sci ; 12: 656961, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093614

RESUMO

Soybean (Glycine max L.) future response to elevated [CO2] has been shown to differ when inoculated with B. japonicum strains isolated at ambient or elevated [CO2]. Plants, inoculated with three Bradyrhizobium strains isolated at different [CO2], were grown in chambers at current and elevated [CO2] (400 vs. 700 ppm). Together with nodule and leaf metabolomic profile, characterization of nodule N-fixation and exchange between organs were tested through 15N2-labeling analysis. Soybeans inoculated with SFJ14-36 strain (isolated at elevated [CO2]) showed a strong metabolic imbalance, at nodule and leaf levels when grown at ambient [CO2], probably due to an insufficient supply of N by nodules, as shown by 15N2-labeling. In nodules, due to shortage of photoassimilate, C may be diverted to aspartic acid instead of malate in order to improve the efficiency of the C source sustaining N2-fixation. In leaves, photorespiration and respiration were boosted at ambient [CO2] in plants inoculated with this strain. Additionally, free phytol, antioxidants, and fatty acid content could be indicate induced senescence due to oxidative stress and lack of nitrogen. Therefore, plants inoculated with Bradyrhizobium strain isolated at elevated [CO2] may have lost their capacity to form effective symbiosis at ambient [CO2] and that was translated at whole plant level through metabolic impairment.

3.
J Plant Physiol ; 254: 153284, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33010664

RESUMO

The response of plant species to external factors depends partly on the interaction with the environment and with the other species that coexist in the same ecosystem. Several studies have investigated the main traits that determine the competitive capacity of plant species, and although the relevance of the traits is not clear, traits both from belowground and aboveground have been observed. In this paper, we grew Trifolium pratense and Agrostis capillaris in intra- and interspecific competition, analyzing the photosynthetic metabolism and nitrogen uptake, among other variables. The results indicated that T. pratense possesses better competition ability due to the higher competitive performance for soil resources compared to A. capillaris, explained by a higher root biomass and a higher nitrogen uptake rate in the former than in the latter. These traits permitted T. pratense to show higher photosynthetic rate than A. capillaris when both species were grown in mixture. Furthermore, the interspecific competition provoked A. capillaris to activate its antioxidant metabolism, through SOD activity, to detoxify the reactive oxygen species generated due to its lower capacity for using the photochemical energy absorbed. In this experiment, we conclude that the competitiveness seems to be more related with soil resources competition than with light competition, and that the photosynthetic rate decline in A. capillaris is more a secondary effect as a consequence of nitrogen limitation.


Assuntos
Agrostis/fisiologia , Pradaria , Trifolium/fisiologia , Agrostis/crescimento & desenvolvimento , Agrostis/metabolismo , Clorofila/metabolismo , Peroxidação de Lipídeos , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Transpiração Vegetal/fisiologia , Solo , Superóxido Dismutase/metabolismo , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo
4.
Plant Physiol Biochem ; 123: 233-241, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29253801

RESUMO

The present study was focused on lettuce, a widely consumed leafy vegetable for the large number of healthy phenolic compounds. Two differently-pigmented lettuce cultivars, i.e. an acyanic-green leaf cv. and an anthocyanic-red one, were grown under high light intensity or elevated CO2 or both in order to evaluate how environmental conditions may affect the production of secondary phenolic metabolites and, thus, lettuce quality. Mild light stress imposed for a short time under ambient or elevated CO2 concentration increased phenolics compounds as well as antioxidant capacity in both lettuce cvs, indicating how the cultivation practice could enhance the health-promoting benefits of lettuce. The phenolic profile depended on pigmentation and the anthocyanic-red cv. always maintained a higher phenolic amount as well as antioxidant capacity than the acyanic-green one. In particular, quercetin, quercetin-3-O-glucuronide, kaempferol, quercitrin and rutin accumulated under high light or high CO2 in the anthocyanic-red cv., whereas cyanidin derivatives were responsive to mild light stress, both at ambient and elevated CO2. In both cvs total free and conjugated phenolic acids maintained higher values under all altered environmental conditions, whereas luteolin reached significant amounts when both stresses were administered together, indicating, in this last case, that the enzymatic regulation of the flavonoid synthesis could be differently affected, the synthesis of flavones being favored.


Assuntos
Dióxido de Carbono/farmacologia , Flavonoides/biossíntese , Lactuca/metabolismo , Luz , Fenóis/metabolismo
5.
J Plant Physiol ; 220: 193-202, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29197761

RESUMO

Climate change can have major consequences for grassland communities since the different species of the community utilize different mechanisms for adaptation to drought and elevated CO2 levels. In addition, contradictory data exist when the combined effects of elevated CO2 and drought are analyzed because the soil water content is not usually similar between CO2 concentrations. Thus, the objectives of this work have been to examine the effect of water stress on plant water relations in two grassland species (Trifolium pratense and Agrostis capillaris), analyzing the possible differences between the two species when soil water content is equal in all treatments, and to elucidate if development under elevated CO2 increases drought tolerance and if so, which are the underlying mechanisms. At ambient CO2, when soil volumetric water content was 15%, both species decreased their water potential in order to continue taking up water. Trifolium pratense performed osmotic adjustment, while Agrostis capillaris decreased the rigidity of its cell wall; moreover, both species increased the root to shoot ratio and decreased leaf area. However, these mechanisms were not sufficient to maintain cell turgor. Elevated CO2 partially mitigated the negative impact of drought on turgor potential in Trifolium pratense through a higher osmotic adjustment and root to shoot ratio and in Agrostis capillaris through a higher leaf relative water content caused by higher hydraulic conductance, but the impact of drought was not mitigated in either species by higher soil water conservation.


Assuntos
Agrostis/fisiologia , Dióxido de Carbono/metabolismo , Secas , Trifolium/fisiologia , Água/fisiologia , Pradaria , Especificidade da Espécie
6.
Plant Physiol Biochem ; 120: 213-222, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29059604

RESUMO

Nitrogen (N) is an important regulator of photosynthetic carbon (C) flow in plants, and an adequate balance between N and C metabolism is needed for correct plant development. However, an excessive N supply can alter this balance and cause changes in specific organic compounds associated with primary and secondary metabolism, including plant growth regulators. In previous work, we observed that high nitrate supply (15 mM) to maize plants led to a decrease in leaf expansion and overall biomass production, when compared with low nitrate supply (5 mM). Thus, the aim of this work is to study how overdoses of nitrate can affect photosynthesis and plant development. The results show that high nitrate doses greatly increased amino acid production, which led to a decrease in the concentration of 2-oxoglutarate, the main source of C skeletons for N assimilation. The concentration of 1-aminocyclopropane-1-carboxylic acid (and possibly its product, ethylene) also rose in high nitrate plants, leading to a decrease in leaf expansion, reducing the demand for photoassimilates by the growing tissues and causing the accumulation of sugars in source leaves. This accumulation of sugars, together with the decrease in 2-oxoglutarate levels and the reduction in chlorophyll concentration, decreased plant photosynthetic rates. This work provides new insights into how high nitrate concentration alters the balance between C and N metabolism, reducing photosynthetic rates and disrupting whole plant development. These findings are particularly relevant since negative effects of nitrate in contexts other than root growth have rarely been studied.


Assuntos
Carbono/metabolismo , Nitratos/farmacologia , Nitrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
7.
Plant Physiol Biochem ; 115: 269-278, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28411511

RESUMO

Both salt stress and high CO2 level, besides influencing secondary metabolism, can affect oxidative status of plants mainly acting in an opposite way with salinity provoking oxidative stress and elevated CO2 alleviating it. The aim of the present work was to study the changes in the composition of phenolic acids and flavonoids as well as in the antioxidant activity in two differently pigmented lettuce cvs (green or red leaf) when submitted to salinity (200 mM NaCl) or elevated CO2 (700 ppm) or to their combination in order to evaluate how a future global change can affect lettuce quality. Following treatments, the red cv. always maintained higher levels of antioxidant secondary metabolites as well as antioxidant activity, proving to be more responsive to altered environmental conditions than the green one. Overall, these results suggest that the application of moderate salinity or elevated CO2, alone or in combination, can induce the production of some phenolics that increase the health benefits of lettuce. In particular, moderate salinity was able to induce the synthesis of the flavonoids quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide and quercitrin. Phenolics-enrichment as well as a higher antioxidant capacity were also observed under high CO2 with the red lettuce accumulating cyanidin, free chlorogenic acid, conjugated caffeic and ferulic acid as well as quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide, luteolin-7-O-glucoside, rutin, quercitrin and kaempferol. When salinity was present in combination with elevated CO2, reduction in yield was prevented and a higher presence of phenolic compounds, in particular luteolin, was observed compared to salinity alone.


Assuntos
Dióxido de Carbono/farmacologia , Lactuca/efeitos dos fármacos , Lactuca/metabolismo , Fenóis/metabolismo , Antocianinas/metabolismo , Antioxidantes/metabolismo , Flavonas/metabolismo , Glucosídeos/metabolismo , Quercetina/análogos & derivados , Quercetina/metabolismo , Salinidade , Cloreto de Sódio/farmacologia
8.
Plant Sci ; 226: 71-81, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25113452

RESUMO

The objective of this study was to determine the response of barley's carbon isotope composition and other physiological parameters to the interaction of salt stress and elevated CO2 levels, and the usefulness of carbon isotope discrimination (Δ(13)C) as indicative of the functional performance of barley (Hordeum vulgare L.). Barley plants were grown under ambient (350 µmol mol(-1)) and elevated (700 µmol mol(-1)) CO2 conditions and subjected to salt stress (0, 80, 160, and 240 mM NaCl) for 14 days. Elevated CO2 levels increased biomass production, water use efficiency and the photosynthetic rate, although this parameter was partly acclimated to elevated CO2 levels. Salt stress decreased this acclimation response because it enhanced the sink strength of the plant. Elevated CO2 significantly decreased the (13)C isotopic composition (δ(13)C) in all plant organs; however, the ratio of δ(13)C between the root and the leaf was increased, indicating a higher allocation of δ(13)C to the below-ground parts. Conversely, salt stress increased plant δ(13)C, showing differences between plant organs. From the strong correlations between Δ(13)C and biomass production, the photosynthetic rate or water use efficiency both at ambient and elevated CO2, we concluded that Δ(13)C is a useful parameter for evaluating leaf and whole plant responses to salinity and can provide an integrated index of processes to understand the mechanisms underlying salt tolerance of barley both under current and future environmental CO2 conditions.


Assuntos
Aclimatação , Dióxido de Carbono/metabolismo , Mudança Climática , Hordeum/metabolismo , Salinidade , Adaptação Fisiológica , Biomassa , Isótopos de Carbono/metabolismo , Hordeum/crescimento & desenvolvimento , Fotossíntese , Folhas de Planta/metabolismo , Transpiração Vegetal , Cloreto de Sódio , Água/fisiologia
9.
J Plant Physiol ; 170(17): 1517-25, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23838124

RESUMO

As a consequence of the increasing importance of vegetables in the human diet, there is an interest in enhancing both the productivity and quality of vegetables. A number of factors, including plant genotype and environmental growing conditions, can impact the production and quality of vegetables. The objective of this study was to determine whether elevated CO2, salinity, or high light treatments assayed individually, or salinity or high light in combination with elevated CO2, increased biomass production and antioxidant capacity in two lettuce cultivars. Elevated CO2 and its combination with salinity or high light increased biomass production in both cultivars, while high light treatment alone increased production in green-leaf lettuce but not in red-leaf lettuce. On the other hand, elevated CO2 and its combination with salinity or high light increased the antioxidant capacity of both cultivars, while high light treatment alone increased the antioxidant capacity of red-leaf lettuce, but not of green-leaf lettuce.


Assuntos
Antioxidantes/metabolismo , Dióxido de Carbono/farmacologia , Lactuca/metabolismo , Luz , Biomassa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Lactuca/efeitos dos fármacos , Lactuca/efeitos da radiação , Água/metabolismo
10.
Photosynth Res ; 111(3): 269-83, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22286185

RESUMO

The future environment may be altered by high concentrations of salt in the soil and elevated [CO(2)] in the atmosphere. These have opposite effects on photosynthesis. Generally, salt stress inhibits photosynthesis by stomatal and non-stomatal mechanisms; in contrast, elevated [CO(2)] stimulates photosynthesis by increasing CO(2) availability in the Rubisco carboxylating site and by reducing photorespiration. However, few studies have focused on the interactive effects of these factors on photosynthesis. To elucidate this knowledge gap, we grew the barley plant, Hordeum vulgare (cv. Iranis), with and without salt stress at either ambient or elevated atmospheric [CO(2)] (350 or 700 µmol mol(-1) CO(2), respectively). We measured growth, several photosynthetic and fluorescence parameters, and carbohydrate content. Under saline conditions, the photosynthetic rate decreased, mostly because of stomatal limitations. Increasing salinity progressively increased metabolic (photochemical and biochemical) limitation; this included an increase in non-photochemical quenching and a reduction in the PSII quantum yield. When salinity was combined with elevated CO(2), the rate of CO(2) diffusion to the carboxylating site increased, despite lower stomatal and internal conductance. The greater CO(2) availability increased the electron sink capacity, which alleviated the salt-induced metabolic limitations on the photosynthetic rate. Consequently, elevated CO(2) partially mitigated the saline effects on photosynthesis by maintaining favorable biochemistry and photochemistry in barley leaves.


Assuntos
Dióxido de Carbono/toxicidade , Exposição Ambiental/efeitos adversos , Hordeum/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Cloreto de Sódio/toxicidade , Metabolismo dos Carboidratos/efeitos dos fármacos , Mudança Climática , Folhas de Planta/metabolismo , Estômatos de Plantas/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Salinidade
11.
Physiol Plant ; 139(3): 256-68, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20149130

RESUMO

Future environmental conditions will include elevated concentrations of salt in the soil and an elevated concentration of CO(2) in the atmosphere. Because these environmental changes will likely affect reactive oxygen species (ROS) formation and cellular antioxidant metabolism in opposite ways, we analyzed changes in cellular H(2)O(2) and non-enzymatic antioxidant metabolite [lipoic acid (LA), ascorbate (ASA), glutathione (GSH)] content induced by salt stress (0, 80, 160 or 240 mM NaCl) under ambient (350 micromol mol(-1)) or elevated (700 micromol mol(-1)) CO(2) concentrations in two barley cultivars (Hordeum vulgare L.) that differ in sensitivity to salinity (cv. Alpha is more sensitive than cv. Iranis). Under non-salinized conditions, elevated CO(2) increased LA content, while ASA and GSH content decreased. Under salinized conditions and ambient CO(2), ASA increased, while GSH and LA decreased. At 240 mM NaCl, H(2)O(2) increased in Alpha and decreased in Iranis. When salt stress was imposed at elevated CO(2), less oxidative stress and lower increases in ASA were detected, while LA was constitutively higher. The decrease in oxidative stress could have been because of less ROS formation or to a higher constitutive LA level, which might have improved regulation of ASA and GSH reductions. Iranis had a greater capacity to synthesize ASA de novo and had higher constitutive LA content than did Alpha. Therefore, we conclude that elevated CO(2) protects barley cultivars against oxidative damage. However, the magnitude of the positive effect is cultivar specific.


Assuntos
Dióxido de Carbono/metabolismo , Hordeum/metabolismo , Estresse Oxidativo , Salinidade , Ácido Tióctico/biossíntese , Ascorbato Peroxidases , Ácido Ascórbico/biossíntese , Glutationa/biossíntese , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Peroxidases/metabolismo
12.
J Plant Physiol ; 167(1): 15-22, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19660829

RESUMO

Future environmental conditions will include elevated concentrations of salt in the soils and elevated concentrations of CO(2) in the atmosphere. Soil salinization inhibits crop growth due to osmotic and ionic stress. However, plants possess salt tolerance mechanisms, such as osmotic and elastic adjustment, to maintain water status. These mechanisms, which enhance the uptake and accumulation of ions and the synthesis of compatible solutes, require substantial energy expenditure. Under elevated CO(2), the carbon and energy supplies are usually higher, which could facilitate the energetically expensive salt tolerance mechanisms. To test this hypothesis, the factors involved in osmotic and elastic adjustments in two barley cultivars (Hordeum vulgare cv. Alpha and cv. Iranis) grown under several salt concentrations and at ambient or elevated [CO(2)] were evaluated. Under ambient [CO(2)] and salt stress, both cultivars (1) decreased the volumetric elasticity modulus (epsilon) of their cell walls, and (2) adjusted osmotically by accumulating ions (Na(+) and Cl(-)) from the soil, confirming barley as an includer species. The contributions of sugars and other unidentified osmolytes also increased, while the contribution of organic acids decreased. Under elevated [CO(2)] and salt stress, epsilon decreased less and osmotic adjustment (OA) was greater than at ambient [CO(2)]. In fact, the greater OA under elevated [CO(2)] was positively correlated with the contributions of sugars and other unidentified compounds. These results indicate that barley is likely to be successful in more salinized soils due to its capacity for OA under elevated [CO(2)].


Assuntos
Atmosfera/química , Dióxido de Carbono/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/fisiologia , Hordeum/efeitos dos fármacos , Hordeum/fisiologia , Tolerância ao Sal/efeitos dos fármacos , Módulo de Elasticidade/efeitos dos fármacos , Íons , Compostos Orgânicos/metabolismo , Osmose/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Salinidade , Cloreto de Sódio/farmacologia , Água/fisiologia
13.
Physiol Plant ; 135(1): 29-42, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19121097

RESUMO

Changes in antioxidant metabolism because of the effect of salinity stress (0, 80, 160 or 240 mM NaCl) on protective enzyme activities under ambient (350 micromol mol(-1)) and elevated (700 micromol mol(-1)) CO(2) concentrations were investigated in two barley cultivars (Hordeum vulgare L., cvs Alpha and Iranis). Electrolyte leakage, peroxidation, antioxidant enzyme activities [superoxide dismutase (SOD), EC 1.15.1.1; ascorbate peroxidase (APX), EC 1.11.1.11; catalase (CAT), EC 1.11.1.6; dehydroascorbate reductase (DHAR), EC 1.8.5.1; monodehydroascorbate reductase (MDHAR), EC 1.6.5.4; glutathione reductase (GR), EC 1.6.4.2] and their isoenzymatic profiles were determined. Under salinity and ambient CO(2), upregulation of antioxidant enzymes such as SOD, APX, CAT, DHAR and GR occurred. However, this upregulation was not enough to counteract all ROS formation as both ion leakage and lipid peroxidation came into play. The higher constitutive SOD and CAT activities together with a higher contribution of Cu,Zn-SOD 1 detected in Iranis might possibly contribute and make this cultivar more salt-tolerant than Alpha. Elevated CO(2) alone had no effect on the constitutive levels of antioxidant enzymes in Iranis, whereas in Alpha it induced an increase in SOD, CAT and MDHAR together with a decrease of DHAR and GR. Under combined conditions of elevated CO(2) and salinity the oxidative damage recorded was lower, above all in Alpha, together with a lower upregulation of the antioxidant system. So it can be concluded that elevated CO(2) mitigates the oxidative stress caused by salinity, involving lower ROS generation and a better maintenance of redox homeostasis as a consequence of higher assimilation rates and lower photorespiration, being the response dependent on the cultivar analysed.


Assuntos
Antioxidantes/metabolismo , Dióxido de Carbono/farmacologia , Hordeum/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Ascorbato Peroxidases , Catalase/metabolismo , Glutationa Redutase/metabolismo , Hordeum/enzimologia , Oxirredução , Peroxidases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/enzimologia , Especificidade da Espécie , Superóxido Dismutase/metabolismo
14.
Photosynth Res ; 78(2): 161-73, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-16245047

RESUMO

The photorespiration cycle plays an important role in avoiding carbon drainage from the Calvin cycle and in protecting plants from photoinhibition. The role of photorespiration is frequently underestimated in C(4) plants, since these are characterized by low photorespiration rates. The aim of this work was to study the relationship between CO(2) assimilation, PS II photochemistry and the xanthophyll cycle when the photorespiratory cycle is disrupted in Zea mays L. To this end, the photorespiration inhibitor phosphinothricin (PPT) was applied individually or together with the photorespiratory C(2) acids, glycolate and glyoxylate to maize leaves. Application of PPT alone led to the inhibition of CO(2) assimilation. Moreover, feeding with glycolate or glyoxylate enhanced the effect of PPT on CO(2) assimilation. Our results confirm that the avoidance of the accumulation of the photorespiratory metabolites glycolate, glyoxylate or phosphoglycolate, is of vital importance for coordinated functioning between the glycolate pathway and CO(2) assimilation. Relatively early changes in PS II photochemistry also took place when the photorespiratory cycle was interrupted. Thus, fluorescence photochemical quenching (qP) was slightly reduced (10%) due to the application of PPT together with glycolate or glyoxylate. A decrease in the efficiency of excitation-energy capture by open PS II reaction centres (F'v/F'm) and an increase in thermal energy dissipation (non-photochemical quenching, NPQ) were also measured. These observations are consistent with a limitation of activity of the Calvin cycle and a subsequent lower demand for reduction equivalents. The increase in NPQ is discussed on the basis of changes in the xanthophyll cycle in maize, which seem to provide a limited protective role to avoid photoinhibition when the glycolate pathway is blocked. We conclude that C(2) photorespiratory acids can act as physiological regulators between the photorespiratory pathway and the Calvin cycle in maize.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...