Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
J Cell Sci ; 133(4)2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31988150

RESUMO

Fluorescence illumination can cause phototoxicity that negatively affects living samples. This study demonstrates that much of the phototoxicity and photobleaching experienced with live-cell fluorescence imaging occurs as a result of 'illumination overhead' (IO). This occurs when a sample is illuminated but fluorescence emission is not being captured by the microscope camera. Several technological advancements have been developed, including fast-switching LED lamps and transistor-transistor logic (TTL) circuits, to diminish phototoxicity caused by IO. These advancements are not standard features on most microscopes and many biologists are unaware of their necessity for live-cell imaging. IO is particularly problematic when imaging rapid processes that require short exposure times. This study presents a workflow to optimize imaging conditions for measuring both slow and dynamic processes while minimizing phototoxicity on any standard microscope. The workflow includes a guide on how to (1) determine the maximum image exposure time for a dynamic process, (2) optimize excitation light intensity and (3) assess cell health with mitochondrial markers.This article has an associated First Person interview with the first author of the paper.


Assuntos
Bioensaio , Luz , Microscopia de Fluorescência , Imagem Óptica , Fotodegradação
4.
Histochem Cell Biol ; 151(4): 357-366, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30767050

RESUMO

The process of fluorescence starts with the efficient generation of light that is required for the excitation of fluorophores. As such, light sources are a crucial component of a fluorescence microscope. Choosing the right illumination tool can not only improve the quality of experimental results, but also the microscope's economic and environmental footprint. While arc lamps have historically proven to be a reliable light source for widefield fluorescence microscopy, solid-state light-emitting diodes (LEDs) have become the light source of choice for new fluorescence microscopy systems. In this paper, we demonstrate that LEDs have superior light stability on all timescales tested and use less electrical power than traditional light sources when used at lower power outputs. They can be readily switched on and off electronically, have a longer lifetime and they do not contain mercury, and thus are better for the environment. We demonstrate that it is important to measure light source power output during warm-up and switching, as a light source's responsiveness (in terms of power) can be quite variable. Several general protocols for testing light source stability are presented. A detailed life cycle analysis shows that an LED light source can have a fourfold lower environmental impact when compared to a metal halide source.


Assuntos
Iluminação/instrumentação , Microscopia de Fluorescência/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...