Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38793155

RESUMO

In this work, an additive manufacturing process for extruding fully compounded thermosetting elastomers based on fluorine-containing polymer compositions is reported. Additive manufacturing printers are designed with a dry ice container to precool filaments made from curable fluoroelastomer (FKM) and perfluoroelastomer (FFKM) compounds. A support tube guides the stiffened filament towards the printer nozzle. This support tube extends near the inlet to a printer nozzle. This approach allows low-modulus, uncured rubber filaments to be printed without buckling, a phenomenon common when 3D printing low-modulus elastomers via the fused deposition modeling (FDM) process. Modeling studies using thermal analyses data from a Dynamic Mechanical Analyzer (DMA) and a Differential Scanning Calorimeter (DSC) are used to calculate the Young's modulus and buckling force, which helps us to select the appropriate applied pressure and the nozzle size for printing. Using this additive manufacturing (AM) method, the successful printing of FKM and FFKM compounds is demonstrated. This process can be used for the future manufacturing of seals or other parts from fluorine-containing polymers.

2.
Micromachines (Basel) ; 15(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38793195

RESUMO

This work investigated material extrusion additive manufacturing (MatEx AM) of specialized fluoroelastomer (FKM) compounds for applications in rubber seals and gaskets. The influence of a commercially available perfluoropolyether (PFPE) plasticizer on the printability of a control FKM rubber compound was studied using a custom-designed ram material extruder, Additive Ram Material Extruder (ARME), for printing fully compounded thermoset elastomers. The plasticizer's effectiveness was assessed based on its ability to address challenges such as high compound viscosity and post-print shrinkage, as well as its impact on interlayer adhesion. The addition of the PFPE plasticizer significantly reduced the FKM compound's viscosity (by 70%) and post-print shrinkage (by 65%). While the addition of the plasticizer decreased the tensile strength of the control compound, specimens printed with the plasticized FKM retained 34% of the tensile strength of compression-molded samples, compared to only 23% for the unplasticized compound. Finally, the feasibility of seals and gaskets manufacturing using both conventional and unconventional additive manufacturing (AM) approaches was explored. A hybrid method combining AM and soft tooling for compression molding emerged as the optimal method for seal and gasket fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...