Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Orthod Dentofacial Orthop ; 139(1): e59-71, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21195258

RESUMO

INTRODUCTION: The objective of this study was to demonstrate the potential of 3-dimensional modeling and finite element analysis as clinical tools in treatment planning for orthodontic tooth movement. High stresses in bone and miniscrew implants under load can cause fractures and trauma for orthodontic patients, and treatments are typically planned by using clinical experience or simple 2-dimensional radiographs. METHODS: Anatomically accurate 3-dimensional models reconstructed from cone-beam computed tomography scans were used to simulate the retraction of a single-rooted mandibular canine with a miniscrew placed as skeletal anchorage. Detailed stress distributions in the implant and peri-implant bone were found, in addition to the effect of the orthodontic bracket hook length and the angulation of retraction force on stress response in the periodontal ligament (PDL). RESULTS: The numeric results showed that the equivalent von Mises stress on the miniscrew under a 200-cN tangential load reached 42 MPa at the first thread recession, whereas von Mises stress in the peri-implant bone only reached 11 MPa below the neck. High tightening loads of 200 N·mm of torsion and 460 cN of axial compression resulted in much greater bone and implant von Mises stresses than tangential loading, exceeding the yield strengths of the titanium alloy and the cortical bone. Increasing the hook length on the orthodontic bracket effectively reduced the canine PDL stress from 80 kPa with no hook to 22 kPa with a hook 7 mm long. Angulating the force apically downward from 0° to 30° had a less significant effect on the PDL stress profile and initial canine deflection. The results suggest that stresses on miniscrew implants under load are sensitive to changes in diameter. Overtightening a miniscrew after placement might be a more likely cause of fracture failure and bone trauma than application of tangential orthodontic force. The reduction of stress along the PDL as a result of increasing the bracket hook length might account for steadier tooth translation by force application closer to the center of resistance of a single-rooted canine. The relatively minor effect of force angulation on the PDL response suggests that the vertical placement of miniscrews in keratinized or nonkeratinized tissue might not significantly affect orthodontic tooth movement. CONCLUSIONS: This model can be adapted as a patient-specific clinical orthodontic tool for planning movement of 1 tooth or several teeth.


Assuntos
Análise de Elementos Finitos , Imageamento Tridimensional/métodos , Planejamento de Assistência ao Paciente , Técnicas de Movimentação Dentária/métodos , Fenômenos Biomecânicos , Simulação por Computador , Tomografia Computadorizada de Feixe Cônico/métodos , Dente Canino/patologia , Ligas Dentárias/química , Implantes Dentários , Módulo de Elasticidade , Humanos , Processamento de Imagem Assistida por Computador/métodos , Mandíbula/patologia , Fenômenos Mecânicos , Modelos Biológicos , Procedimentos de Ancoragem Ortodôntica/instrumentação , Desenho de Aparelho Ortodôntico , Braquetes Ortodônticos , Ligamento Periodontal/patologia , Pressão , Estresse Mecânico , Titânio/química , Técnicas de Movimentação Dentária/instrumentação , Torque , Torção Mecânica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...