Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 14(12): 2458-2470, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27614059

RESUMO

Essentials Factor VIIa is cleared principally as a complex with antithrombin. Enzyme/serpin complexes are preferred ligands for the scavenger-receptor LRP1. Factor VIIa/antithrombin but not factor VIIa alone is a ligand for LRP1. Macrophage-expressed LRP1 contributes to the clearance of factor VIIa/antithrombin. SUMMARY: Background Recent findings point to activated factor VII (FVIIa) being cleared predominantly (± 65% of the injected protein) as part of a complex with the serpin antithrombin. FVIIa-antithrombin complexes are targeted to hepatocytes and liver macrophages. Both cells lines abundantly express LDL receptor-related protein 1 (LRP1), a scavenger receptor mediating the clearance of protease-serpin complexes. Objectives To investigate whether FVIIa-antithrombin is a ligand for LRP1. Methods Binding of FVIIa and pre-formed FVIIa-antithrombin to purified LRP1 Fc-tagged cluster IV (rLRP1-cIV/Fc) and to human and murine macrophages was analyzed. FVIIa clearance was determined in macrophage LRP1 (macLRP1)-deficient mice. Results Solid-phase binding assays showed that FVIIa-antithrombin bound in a specific, dose-dependent and saturable manner to rLRP1-cIV/Fc. Competition experiments with human THP1 macrophages indicated that binding of FVIIa but not of FVIIa-antithrombin was reduced in the presence of annexin-V or anti-tissue factor antibodies, whereas binding of FVIIa-antithrombin but not FVIIa was inhibited by the LRP1-antagonist GST-RAP. Additional experiments revealed binding of both FVIIa and FVIIa-antithrombin to murine control macrophages. In contrast, no binding of FVIIa-antithrombin to macrophages derived from macLRP1-deficient mice could be detected. Clearance of FVIIa-antithrombin but not of active site-blocked FVIIa was delayed 1.5-fold (mean residence time of 3.3 ± 0.1 h versus 2.4 ± 0.2 h) in macLRP1-deficient mice. The circulatory presence of FVIIa was prolonged to a similar extent in macLRP1-deficient mice and in control mice. Conclusions Our data show that FVIIa-antithrombin but not FVIIa is a ligand for LRP1, and that LRP1 contributes to the clearance of FVIIa-antithrombin in vivo.


Assuntos
Antitrombinas/metabolismo , Fator VIIa/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas de Transporte/metabolismo , Domínio Catalítico , Linhagem Celular , Humanos , Ligantes , Macrófagos/metabolismo , Camundongos , Ligação Proteica , Proteínas Recombinantes/metabolismo , Serpinas/metabolismo , Tromboplastina/metabolismo , Fatores de Tempo
2.
Toxicol Appl Pharmacol ; 261(1): 97-104, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22484159

RESUMO

The present study was conducted to determine whether exposure to the mono-(2-ethylhexyl) phthalate (MEHP) represents a genuine threat to male human reproductive function. To this aim, we investigated the effects on human male fetal germ cells of a 10⁻5 M exposure. This dose is slightly above the mean concentrations found in human fetal cord blood samples by biomonitoring studies. The in vitro experimental approach was further validated for phthalate toxicity assessment by comparing the effects of in vitro and in vivo exposure in mouse testes. Human fetal testes were recovered during the first trimester (7-12 weeks) of gestation and cultured in the presence or not of 10⁻5 M MEHP for three days. Apoptosis was quantified by measuring the percentage of Caspase-3 positive germ cells. The concentration of phthalate reaching the fetal gonads was determined by radioactivity measurements, after incubations with ¹4C-MEHP. A 10⁻5 M exposure significantly increased the rate of apoptosis in human male fetal germ cells. The intratesticular MEHP concentration measured corresponded to the concentration added in vitro to the culture medium. Furthermore, a comparable effect on germ cell apoptosis in mouse fetal testes was induced both in vitro and in vivo. This study suggests that this 10⁻5 M exposure is sufficient to induce changes to the in vivo development of the human fetal male germ cells.


Assuntos
Apoptose/efeitos dos fármacos , Dietilexilftalato/análogos & derivados , Células Germinativas/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Radioisótopos de Carbono , Caspase 3/metabolismo , Dietilexilftalato/farmacocinética , Dietilexilftalato/toxicidade , Relação Dose-Resposta a Droga , Células Germinativas/metabolismo , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade da Espécie , Testículo/embriologia
3.
Gynecol Obstet Fertil ; 36(9): 898-907, 2008 Sep.
Artigo em Francês | MEDLINE | ID: mdl-18718803

RESUMO

Two major functions are assumed by the testis: the production of male gametes (that is, spermatozoa) and the production of steroid hormones. Both two functions are established during fetal life and are essential to the adult fertility and the masculinization of the internal tract and genitalia. For many years, our laboratory has been interested in the ontogeny of those two functions in rodents and, since 2003, in collaboration with gynecology and obstetrics service of professor R. Frydman in Antoine-Béclère hospital, we have studied them in human. The first aim of this work was to improve the global knowledge of the human fetal testis development by using both our experimental data and the literature. Then, we focused on the different defects that can occur during the fetal testis development. Indeed, male reproductive abnormalities have been steadily increasing since the last decades and are thought to be related to the concomitant increase of the concentration of contaminants and particularly of endocrine disruptors in the environment. Thus, we decided to study the effect of endocrine disruptors on human fetal testis and, more particularly, the effect of phthalates, by using an organ culture system developed for human. In contrast to the data obtained in rat, mono (ethylhexyl)-phthalate (MEHP), an active metabolite of the most widespread phthalate in the environment, does not disturb the steroidogenic function. On the other hand, it has a negative effect on the male germ cells number. This study is the first experimental demonstration of a negative effect of phthalates directly on human fetal testis.


Assuntos
Exposição Ambiental/efeitos adversos , Ácidos Ftálicos/efeitos adversos , Espermatogênese/efeitos dos fármacos , Testículo/embriologia , Testículo/fisiologia , Animais , Humanos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Ratos , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Testículo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...