Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Data ; 10(1): 391, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339978

RESUMO

Given that metals, minerals and energy resources extracted through mining are fundamental to human society, it follows that accurate data describing mine production are equally important. Although there are often national statistical sources, this typically includes data for metals (e.g., gold), minerals (e.g., iron ore) or energy resources (e.g., coal). No such study has ever compiled a national mine production data set which includes basic mining data such as ore processed, grades, extracted products (e.g., metals, concentrates, saleable ore) and waste rock. These data are crucial for geological assessments of mineable resources, environmental impacts, material flows (including losses during mining, smelting-refining, use and disposal or recycling) as well as facilitating more quantitative assessments of critical mineral potential (including possible extraction from tailings and/or waste rock left by mining). This data set achieves these needs for Australia, providing a world-first and comprehensive review of a national mining industry and an exemplar of what can be achieved for other countries with mining industry sectors.


Assuntos
Conjuntos de Dados como Assunto , Metais , Minerais , Mineração , Austrália , Monitoramento Ambiental , Ouro/normas , Ouro/provisão & distribuição , Metais/normas , Metais/provisão & distribuição , Minerais/normas , Minerais/provisão & distribuição , Mineração/estatística & dados numéricos , Reciclagem
3.
Sci Total Environ ; 741: 140375, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32599403

RESUMO

Mining is often portrayed as a contributor to sustainable development, especially so in developing countries such as Papua New Guinea (PNG). Since 1970, several large mines have been developed in PNG (e.g. Panguna, Ok Tedi, Porgera, Lihir, Ramu) but always with controversial environmental standards and social impacts often overlooked or ignored. In PNG, mine wastes are approved to be discharged to rivers or oceans on a very large scale, leading to widespread environmental and social impacts - to the point of civil war in the case of Panguna. The intimate links between indigenous communities and their environment have invariably been under-estimated or ignored, leading many to question mining's role in PNG's development. Here, we review the geology of PNG, its mineral resources, mining history, key trends for grades and resources, environmental metrics (water, energy, carbon), mine waste management, and regulatory and governance issues. The study provides a unique and comprehensive insight into the sustainable development contribution of the mining industry in PNG - especially the controversial practices of riverine and marine mine waste disposal. The history of mining is a complex story of the links between the anthroposphere, biosphere, hydrosphere and geosphere. Ultimately, this study demonstrates that the scale of environmental and social impacts and risks are clearly related to the vast scale of mine wastes - a fact which remains been poorly recognised. For PNG, the promise of mining-led development remains elusive to many communities and they are invariably left with significant social and environmental legacies which will last for decades to centuries (e.g. mine waste impacts on water resources). Most recently, the PNG government has moved to ban riverine tailings disposal for future projects and encourage greater transparency and accountability by the mining sector, including its interactions with communities. There remains hope for better outcomes in the future.

4.
Sci Total Environ ; 622-623: 614-625, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223085

RESUMO

The platinum group elements (PGEs) are used in many technologies and products in modern society, especially auto-catalysts, chemical process catalysts and specialty alloys, yet supply is dominated by South Africa. This leads PGEs to be assessed as 'critical metals', signalling concern about the likelihood and consequences of social, environmental and economic impacts from disruptions to supply. In order to better understand the global PGE situation, this paper presents a comprehensive global assessment of PGE reserves and resources and the key mining trends which can affect supply. The data shows that global PGE resources have increased from 90,733t PGEs in 2010 to 105,682t PGEs in 2015, a 16.4% increase - despite global production of 2243t PGEs over this period. This suggests that the key issues facing the PGE sector are not geological or resource depletion, but clearly social, economic and environmental in nature - as highlighted by recent social issues in South Africa and volatile global economic conditions. Concerns over PGE supply reliability and the implications of any supply disruption will therefore continue to see the PGEs labelled as critical metals - but certainly not due to resource depletion.

5.
Environ Sci Pollut Res Int ; 22(23): 18410-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26233750

RESUMO

This paper presents a comprehensive analysis of the pollutant emissions from electrical generation facilities reported to Australia's National Pollutant Inventory (NPI). The data, in terms of pollutant intensity with respect to generation capacity and fuel source, show significant variability. Based on reported data, the dominant pathway and environmental segment for emissions is point-source air emissions. Surprisingly, pollutant emissions from power stations are generally a very small fraction of Australia's facility and diffuse emissions, except for F, HCl, NO(x), PM2.5, SO2 and H2SO4 (where it constitutes between 30 and 90% of emissions). In general, natural gas and diesel facilities have higher organic pollutant intensities, while black and brown coal have higher metal/metalloid pollutant intensities and there is a wide variability for inorganic pollutant intensities. When examining pollutant intensities with respect to capacity, there is very little evidence to show that increased scale leads to more efficient operation or lower pollutant intensity. Another important finding is that the pollutant loads associated with transfers and reuse are substantial, and often represent most of the reported pollutants from a given generation facility. Finally, given the issues identified with the NPI data and its use, some possible improvements include the following: (i) linking site generation data to NPI data (especially generation data, i.e., MWh); (ii) better validation and documentation of emissions factors, especially the methods used to derive and report estimates to the NPI; (iii) using NPI data to undertake comparative life cycle impact assessment studies of different power stations and fuel/energy sources, or even intensive industrial regions (especially from a toxicity perspective) and (iv) linking NPI data in a given region to ongoing environmental monitoring, so that loads can be linked to concentrations for particular pollutants and the relevant guidelines (e.g., air, water, human health). Pollutant inventory systems are clearly valuable tools in understanding pollution burdens and ongoing analysis of the growing body of data should help to further improve environmental and public health outcomes. Overall, this study provides a valuable insight into the current status of pollutant intensities from Australia's electrical generation facilities and should be a valuable benchmark for future studies and international comparisons.


Assuntos
Poluentes Atmosféricos/química , Centrais Elétricas , Poluição do Ar/análise , Austrália , Monitoramento Ambiental , Substâncias Perigosas/química , Humanos , Material Particulado/química , Saúde Pública
6.
Sci Total Environ ; 472: 590-607, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24317167

RESUMO

Uranium (U) mining remains controversial in many parts of the world, especially in a post-Fukushima context, and often in areas with significant U resources. Although nuclear proponents point to the relatively low carbon intensity of nuclear power compared to fossil fuels, opponents argue that this will be eroded in the future as ore grades decline and energy and greenhouse gas emissions (GGEs) intensity increases as a result. Invariably both sides fail to make use of the increasingly available data reported by some U mines through sustainability reporting - allowing a comprehensive assessment of recent trends in the energy and GGE intensity of U production, as well as combining this with reported mineral resources to allow more comprehensive modelling of future energy and GGEs intensity. In this study, detailed data sets are compiled on reported U resources by deposit type, as well as mine production, energy and GGE intensity. Some important aspects included are the relationship between ore grade, deposit type and recovery, which are crucial in future projections of U mining. Overall, the paper demonstrates that there are extensive U resources known to meet potential short to medium term demand, although the future of U mining remains uncertain due to the doubt about the future of nuclear power as well as a range of complex social, environmental, economic and some site-specific technical issues.


Assuntos
Fontes Geradoras de Energia , Mineração , Poluentes Radioativos/análise , Urânio/análise , Centrais Nucleares
7.
Environ Pollut ; 158(5): 1252-60, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20176422

RESUMO

The former Rum Jungle uranium-copper project, Australia, is an internationally important case study on environmental pollution from and rehabilitation of mining. The Rum Jungle mining project is briefly reviewed, followed by a critical evaluation of monitoring data and pollution loads prior to and after rehabilitation - leading to the conclusion that rehabilitation has clearly failed the test of time after just two decades. The most critical findings are the need to understand pollution cycles holistically, and designing monitoring regimes to match, explicit inclusion of radiological criteria (lacking in original planning), and finally the need to set targets based on environmental criteria. Two examples include polluted groundwater which was excluded from rehabilitation and the poor design, construction and/or performance of engineered soil covers - both leading to increasing acid drainage impacts on the Finniss River. The critical review therefore presents a valuable case study of the environmental performance of uranium mine site rehabilitation.


Assuntos
Conservação dos Recursos Naturais , Cobre/análise , Monitoramento Ambiental , Poluição Ambiental/análise , Urânio/análise , Austrália , Conservação dos Recursos Naturais/história , Monitoramento Ambiental/história , Poluição Ambiental/história , História do Século XX , Mineração
8.
Environ Sci Technol ; 42(7): 2624-30, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18505007

RESUMO

The mining of uranium has long been a controversial public issue, and a renewed debate has emerged on the potential for nuclear power to help mitigate against climate change. The central thesis of pro-nuclear advocates is the lower carbon intensity of nuclear energy compared to fossil fuels, although there remains very little detailed analysis of the true carbon costs of nuclear energy. In this paper, we compile and analyze a range of data on uranium mining and milling, including uranium resources as well as sustainability metrics such as energy and water consumption and carbon emissions with respect to uranium production-arguably the first time for modern projects. The extent of economically recoverable uranium resources is clearly linked to exploration, technology, and economics but also inextricably to environmental costs such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues. Overall, the data clearly show the sensitivity of sustainability assessments to the ore grade of the uranium deposit being mined and that significant gaps remain in complete sustainability reporting and accounting. This paper is a case study of the energy, water, and carbon costs of uranium mining and milling within the context of the nuclear energy chain.


Assuntos
Conservação dos Recursos Naturais , Mineração , Urânio
9.
J Environ Radioact ; 99(2): 288-315, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17913316

RESUMO

The release of radon gas and progeny from the mining and milling of uranium-bearing ores has long been recognised as a potential radiological health hazard. The standards for exposure to radon and progeny have decreased over time as the understanding of their health risk has improved. In recent years there has been debate on the long-term releases (10,000 years) of radon from uranium mining and milling sites, focusing on abandoned, operational and rehabilitated sites. The primary purpose has been estimates of the radiation exposure of both local and global populations. Although there has been an increasing number of radon release studies over recent years in the USA, Australia, Canada and elsewhere, a systematic evaluation of this work has yet to be published in the international literature. This paper presents a detailed compilation and analysis of Australian studies. In order to quantify radon sources, a review of data on uranium mining and milling wastes in Australia, as they influence radon releases, is presented. An extensive compilation of the available radon release data is then assembled for the various projects, including a comparison to predictions of radon behaviour where available. An analysis of cumulative radon releases is then developed and compared to the UNSCEAR approach. The implications for the various assessments of long-term releases of radon are discussed, including aspects such as the need for ongoing monitoring of rehabilitation at uranium mining and milling sites and life-cycle accounting.


Assuntos
Mineração , Radônio , Urânio , Austrália , Monitoramento Ambiental
10.
J Hazard Mater ; 139(3): 409-12, 2007 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-16621267

RESUMO

The need to engineer cover systems for the successful rehabilitation or remediation of a wide variety of solid wastes is increasing. Some common applications include landfills, hazardous waste repositories, or mine tailings dams and waste rock/overburden dumps. The brown coal industry of the Latrobe Valley region of Victoria, Australia, produces significant quantities of coal ash and overburden annually. There are some site-specific acid mine drainage (AMD) issues associated with overburden material. This needs to be addressed both during the operational phase of a project and during rehabilitation. An innovative approach was taken to investigate the potential to use leached brown coal ash in engineered soil covers on this overburden dump. The basis for this is two-fold: first, the ash has favourable physical characteristics for use in cover systems (such as high storage capacity/porosity, moderately low permeability, and an ability to act as a capillary break layer generating minimal leachate or seepage); and second, the leachate from the ash is mildly alkaline (which can help to mitigate and reduce the risk of AMD). This paper will review the engineering issues involved in using leached brown coal ash in designing soil covers for potentially acid-forming overburden dumps. It presents the results of laboratory work investigating the technical feasibility of using leached brown coal ash in engineered solid waste cover systems.


Assuntos
Minas de Carvão , Resíduos Industriais , Eliminação de Resíduos/métodos , Poluentes do Solo , Engenharia , Concentração de Íons de Hidrogênio , Permeabilidade , Porosidade , Solo , Água , Poluição da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...