Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 16(12): 2305-2306, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070669

RESUMO

Macroautophagy/autophagy delivers cytoplasmic cargo to lysosomes for degradation. In yeast, the single Atg8 protein plays a role in the formation of autophagosomes whereas in mammalian cells there are five to seven paralogs, referred to as mammalian Atg8s (mAtg8s: GABARAP, GABARAPL1, GABARAPL2, LC3A, LC3B, LC3B2 and LC3C) with incompletely defined functions. Here we show that a subset of mAtg8s directly control lysosomal biogenesis. This occurs at the level of TFEB, the principal regulator of the lysosomal transcriptional program. mAtg8s promote TFEB's nuclear translocation in response to stimuli such as starvation. GABARAP interacts directly with TFEB, whereas RNA-Seq analyses reveal that knockout of six genes encoding mAtg8s, or a triple knockout of the genes encoding all GABARAPs, diminishes the TFEB transcriptional program. We furthermore show that GABARAPs in cooperation with other proteins, IRGM, a factor implicated in tuberculosis and Crohn disease, and STX17, are required during starvation for optimal inhibition of MTOR, an upstream kinase of TFEB, and activation of the PPP3/calcineurin phosphatase that dephosphorylates TFEB, thus promoting its nuclear translocation. In conclusion, mAtg8s, IRGM and STX17 control lysosomal biogenesis by their combined or individual effects on MTOR, TFEB, and PPP3/calcineurin, independently of their roles in the formation of autophagosomal membranes. Abbreviations: AMPK: AMP-activated protein kinase; IRGM: immunity related GTPase M; mAtg8s: mammalian Atg8 proteins; MTOR: mechanistic target of rapamycin kinase; PPP3CB: protein phosphatase 3 catalytic subunit beta; RRAGA: Ras related GTP binding A.; STX17: syntaxin 17; ULK1: unc-51 like autophagy activating kinase 1.

3.
Nat Cell Biol ; 22(8): 973-985, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32753672

RESUMO

Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/fisiologia , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Calcineurina/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos/fisiologia , Transporte Proteico , Proteínas Qa-SNARE/metabolismo
4.
Autophagy ; 16(8): 1539-1541, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521192

RESUMO

Membrane integrity is essential for cellular survival and function. The spectrum of mechanisms protecting cellular and intracellular membranes is not fully known. Our recent work has uncovered a cellular system termed MERIT for lysosomal membrane repair, removal and replacement. Specifically, lysosomal membrane damage induces, in succession, ESCRT-dependent membrane repair, macroautophagy/autophagy-dominant removal of damaged lysosomes, and initiation of lysosomal biogenesis via transcriptional programs. The MERIT system is governed by galectins, a family of cytosolically synthesized lectins recognizing ß-galactoside glycans. We found in this study that LGALS3 (galectin 3) detects membrane damage by detecting exposed lumenal glycosyl groups, recruits and organizes ESCRT components PDCD6IP/ALIX, CHMP4A, and CHMPB at damaged sites on the lysosomes, and facilitates ESCRT-driven repair of lysosomal membrane. At later stages, LGALS3 cooperates with TRIM16, an autophagy receptor-regulator, to engage autophagy machinery in removal of excessively damaged lysosomes. In the absence of LGALS3, repair and autophagy are less efficient, whereas TFEB nuclear translocation increases to compensate lysosomal deficiency via de novo lysosomal biogenesis. The MERIT system protects endomembrane integrity against a broad spectrum of agents damaging the endolysosomal network including lysosomotropic drugs, Mycobacterium tuberculosis, or neurotoxic MAPT/tau. ABBREVIATIONS: AMPK: AMP-activated protein kinase; APEX2: engineered ascorbate peroxidase 2; ATG13: autophagy related 13; ATG16L1: autophagy related 16 like 1; BMMs: bone marrow-derived macrophages; ESCRT: endosomal sorting complexes required for transport; GPN: glycyl-L-phenylalanine 2-naphthylamide; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MERIT: membrane repair, removal and replacement; MTOR: mechanistic target of rapamycin kinase; TFEB: transcription factor EB; TFRC: transferrin receptor; TRIM16: tripartite motif-containing 16.


Assuntos
Membrana Celular/metabolismo , Lisossomos/metabolismo , Animais , Autofagia , Cálcio/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Galectinas/metabolismo , Humanos , Modelos Biológicos
5.
Dev Cell ; 52(1): 69-87.e8, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31813797

RESUMO

Endomembrane damage elicits homeostatic responses including ESCRT-dependent membrane repair and autophagic removal of damaged organelles. Previous studies have suggested that these systems may act separately. Here, we show that galectin-3 (Gal3), a ß-galactoside-binding cytosolic lectin, unifies and coordinates ESCRT and autophagy responses to lysosomal damage. Gal3 and its capacity to recognize damage-exposed glycans were required for efficient recruitment of the ESCRT component ALIX during lysosomal damage. Both Gal3 and ALIX were required for restoration of lysosomal function. Gal3 promoted interactions between ALIX and the downstream ESCRT-III effector CHMP4 during lysosomal repair. At later time points following lysosomal injury, Gal3 controlled autophagic responses. When this failed, as in Gal3 knockout cells, lysosomal replacement program took over through TFEB. Manifestations of this staged response, which includes membrane repair, removal, and replacement, were detected in model systems of lysosomal damage inflicted by proteopathic tau and during phagosome parasitism by Mycobacterium tuberculosis.


Assuntos
Autofagia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Galectina 3/metabolismo , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Tuberculose/prevenção & controle , Proteínas tau/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia
6.
Autophagy ; 15(1): 169-171, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30081722

RESUMO

The Ser/Thr protein kinase MTOR (mechanistic target of rapamycin kinase) regulates cellular metabolism and controls macroautophagy/autophagy. Autophagy has both metabolic and quality control functions, including recycling nutrients at times of starvation and removing dysfunctional intracellular organelles. Lysosomal damage is one of the strongest inducers of autophagy, and yet mechanisms of its activation in response to lysosomal membrane damage are not fully understood. Our recent study has uncovered a new signal transduction system based on cytosolic galectins that elicits autophagy by controlling master regulators of metabolism and autophagy, MTOR and AMPK, in response to lysosomal damage. Thus, intracellular galectins are not, as previously thought, passive tags recognizing damage to guide selective autophagy receptors, but control the activation state of AMPK and MTOR in response to endomembrane damage. Abbreviations: MTOR: mechanistic target of rapamycin kinase; AMPK: AMP-activated protein kinase / Protein Kinase AMP-Activated; SLC38A9: Solute Carrier Family 38 Member 9; APEX2: engineered ascorbate peroxidase 2; RRAGA/B: Ras Related GTP Binding A or B; LAMTOR1: Late Endosomal/Lysosomal Adaptor, MAPK and MTOR Activator 1; LGALS8: Lectin, Galactoside-Binding, Soluble, 8 / Galectin 8; LGALS9: Lectin, Galactoside-Binding, Soluble, 9 / Galectin 9; TAK1: TGF-Beta Activated Kinase 1 / Mitogen-Activated Protein Kinase Kinase Kinase 7 (MAP3K7); STK11/LKB1: Serine/Threonine Kinase 11 / Liver Kinase B1; ULK1: Unc-51 Like Autophagy Activating Kinase 1.


Assuntos
Autofagia , Proteínas Quinases Ativadas por AMP , Galectinas , Lisossomos , Serina-Treonina Quinases TOR
7.
Mol Cell ; 70(1): 120-135.e8, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625033

RESUMO

The Ser/Thr protein kinase mTOR controls metabolic pathways, including the catabolic process of autophagy. Autophagy plays additional, catabolism-independent roles in homeostasis of cytoplasmic endomembranes and whole organelles. How signals from endomembrane damage are transmitted to mTOR to orchestrate autophagic responses is not known. Here we show that mTOR is inhibited by lysosomal damage. Lysosomal damage, recognized by galectins, leads to association of galectin-8 (Gal8) with the mTOR apparatus on the lysosome. Gal8 inhibits mTOR activity through its Ragulator-Rag signaling machinery, whereas galectin-9 activates AMPK in response to lysosomal injury. Both systems converge upon downstream effectors including autophagy and defense against Mycobacterium tuberculosis. Thus, a novel galectin-based signal-transduction system, termed here GALTOR, intersects with the known regulators of mTOR on the lysosome and controls them in response to lysosomal damage. VIDEO ABSTRACT.


Assuntos
Autofagia , Galectinas/metabolismo , Lisossomos/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Tuberculose/enzimologia , Proteínas Quinases Ativadas por AMP/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Galectinas/deficiência , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Lisossomos/microbiologia , Lisossomos/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos , Mycobacterium tuberculosis/patogenicidade , Transdução de Sinais , Células THP-1 , Serina-Treonina Quinases TOR/genética , Tuberculose/genética , Tuberculose/microbiologia , Tuberculose/patologia
8.
J Cell Biol ; 217(3): 997-1013, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29420192

RESUMO

Autophagy is a conserved eukaryotic process with metabolic, immune, and general homeostatic functions in mammalian cells. Mammalian autophagosomes fuse with lysosomes in a SNARE-driven process that includes syntaxin 17 (Stx17). How Stx17 translocates to autophagosomes is unknown. In this study, we show that the mechanism of Stx17 recruitment to autophagosomes in human cells entails the small guanosine triphosphatase IRGM. Stx17 directly interacts with IRGM, and efficient Stx17 recruitment to autophagosomes requires IRGM. Both IRGM and Stx17 directly interact with mammalian Atg8 proteins, thus being guided to autophagosomes. We also show that Stx17 is significant in defense against infectious agents and that Stx17-IRGM interaction is targeted by an HIV virulence factor Nef.


Assuntos
Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Qa-SNARE/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas de Ligação ao GTP/genética , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Células HeLa , Humanos , Transporte Proteico/genética , Proteínas Qa-SNARE/genética , Células THP-1 , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
9.
Dev Cell ; 39(1): 13-27, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27693506

RESUMO

Selective autophagy performs an array of tasks to maintain intracellular homeostasis, sterility, and organellar and cellular functionality. The fidelity of these processes depends on precise target recognition and limited activation of the autophagy apparatus in a localized fashion. Here we describe cooperation in such processes between the TRIM family and Galectin family of proteins. TRIMs, which are E3 ubiquitin ligases, displayed propensity to associate with Galectins. One specific TRIM, TRIM16, interacted with Galectin-3 in a ULK1-dependent manner. TRIM16, through integration of Galectin- and ubiquitin-based processes, coordinated recognition of membrane damage with mobilization of the core autophagy regulators ATG16L1, ULK1, and Beclin 1 in response to damaged endomembranes. TRIM16 affected mTOR, interacted with TFEB, and influenced TFEB's nuclear translocation. The cooperation between TRIM16 and Galectin-3 in targeting and activation of selective autophagy protects cells from lysosomal damage and Mycobacterium tuberculosis invasion.


Assuntos
Autofagia , Proteínas de Ligação a DNA/metabolismo , Galectina 3/metabolismo , Homeostase , Membranas Intracelulares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteína Beclina-1/metabolismo , Calcineurina/metabolismo , Citoproteção , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Mycobacterium tuberculosis/fisiologia , Fosforilação , Ligação Proteica , Estabilidade Proteica , Células RAW 264.7 , Serina-Treonina Quinases TOR/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases , Ubiquitinação
10.
Nat Commun ; 6: 8620, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26503418

RESUMO

Autophagy is a conserved homeostatic process active in all human cells and affecting a spectrum of diseases. Here we use a pharmaceutical screen to discover new mechanisms for activation of autophagy. We identify a subset of pharmaceuticals inducing autophagic flux with effects in diverse cellular systems modelling specific stages of several human diseases such as HIV transmission and hyperphosphorylated tau accumulation in Alzheimer's disease. One drug, flubendazole, is a potent inducer of autophagy initiation and flux by affecting acetylated and dynamic microtubules in a reciprocal way. Disruption of dynamic microtubules by flubendazole results in mTOR deactivation and dissociation from lysosomes leading to TFEB (transcription factor EB) nuclear translocation and activation of autophagy. By inducing microtubule acetylation, flubendazole activates JNK1 leading to Bcl-2 phosphorylation, causing release of Beclin1 from Bcl-2-Beclin1 complexes for autophagy induction, thus uncovering a new approach to inducing autophagic flux that may be applicable in disease treatment.


Assuntos
Doença de Alzheimer/fisiopatologia , Autofagia/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Bibliotecas de Moléculas Pequenas/farmacologia , Acetilação/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mebendazol/análogos & derivados , Mebendazol/farmacologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...