Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276660

RESUMO

Malaria remains a major global health challenge, causing over 0.6 million yearly deaths. To understand naturally acquired immunity in adult human populations in malaria-prevalent regions, improved serological tools are needed, particularly where multiple malaria parasite species co-exist. Slide-based and bead-based multiplex approaches can help characterize antibodies in malaria patients from endemic regions, but these require pure, well-defined antigens. To efficiently bypass purification steps, codon-optimized malaria antigen genes with N-terminal FLAG-tag and C-terminal Ctag sequences were expressed in a wheat germ cell-free system and adsorbed on functionalized BioPlex beads. In a pilot study, 15 P. falciparum antigens, 8 P. vivax antigens, and a negative control (GFP) were adsorbed individually on functionalized bead types through their Ctag. To validate the multiplexing powers of this platform, 10 P. falciparum-infected patient sera from a US NIH MESA-ICEMR study site in Goa, India, were tested against all 23 parasite antigens. Serial dilution of patient sera revealed variations in potency and breadth of antibodies to various parasite antigens. Individual patients revealed informative variations in immunity to P. falciparum versus P. vivax. This multiplex approach to malaria serology captures varying immunity to different human malaria parasite species and different parasite antigens. This approach can be scaled to track the dynamics of antibody production during one or more human malaria infections.

2.
Antimicrob Agents Chemother ; 65(9): e0058621, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34152814

RESUMO

Malaria parasites have three genomes: a nuclear genome, a mitochondrial genome, and an apicoplast genome. Since the apicoplast is a plastid organelle of prokaryotic origin and has no counterpart in the human host, it can be a source of novel targets for antimalarials. Plasmodium falciparum DNA gyrase (PfGyr) A and B subunits both have apicoplast-targeting signals. First, to test the predicted localization of this enzyme in the apicoplast and the breadth of its function at the subcellular level, nuclear-encoded PfGyrA was disrupted using CRISPR/Cas9 gene editing. Isopentenyl pyrophosphate (IPP) is known to rescue parasites from apicoplast inhibitors. Indeed, successful growth and characterization of PfΔGyrA was possible in the presence of IPP. PfGyrA disruption was accompanied by loss of plastid acyl-carrier protein (ACP) immunofluorescence and the plastid genome. Second, ciprofloxacin, an antibacterial gyrase inhibitor, has been used for malaria prophylaxis, but there is a need for a more detailed description of the mode of action of ciprofloxacin in malaria parasites. As predicted, PfΔGyrA clone supplemented with IPP was less sensitive to ciprofloxacin but not to the nuclear topoisomerase inhibitor etoposide. At high concentrations, however, ciprofloxacin continued to inhibit IPP-rescued PfΔGyrA, possibly suggesting that ciprofloxacin may have an additional nonapicoplast target in P. falciparum. Overall, we confirm that PfGyrA is an apicoplast enzyme in the malaria parasite, essential for blood-stage parasites, and a possible target of ciprofloxacin but perhaps not the only target.


Assuntos
Antimaláricos , Apicoplastos , Apicoplastos/genética , DNA Girase/genética , Humanos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
3.
Malar J ; 15(1): 569, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27884146

RESUMO

BACKGROUND: Malaria remains an important cause of morbidity and mortality in India. Though many comprehensive studies have been carried out in Africa and Southeast Asia to characterize and examine determinants of Plasmodium falciparum and Plasmodium vivax malaria pathogenesis, fewer have been conducted in India. METHODS: A prospective study of malaria-positive individuals was conducted at Goa Medical College and Hospital (GMC) from 2012 to 2015 to identify demographic, diagnostic and clinical indicators associated with P. falciparum and P. vivax infection on univariate analysis. RESULTS: Between 2012 and 2015, 74,571 febrile individuals, 6287 (8.4%) of whom were malaria positive, presented to GMC. The total number of malaria cases at GMC increased more than two-fold over four years, with both P. vivax and P. falciparum cases present year-round. Some 1116 malaria-positive individuals (mean age = 27, 91% male), 88.2% of whom were born outside of Goa and 51% of whom were construction workers, were enroled in the study. Of 1088 confirmed malaria-positive patients, 77.0% had P. vivax, 21.0% had P. falciparum and 2.0% had mixed malaria. Patients over 40 years of age and with P. falciparum infection were significantly (p < 0.001) more likely to be hospitalised than younger and P. vivax patients, respectively. While approximately equal percentages of hospitalised P. falciparum (76.6%) and P. vivax (78.9%) cases presented with at least one WHO severity indicator, a greater percentage of P. falciparum inpatients presented with at least two (43.9%, p < 0.05) and at least three (29.9%, p < 0.01) severity features. There were six deaths among the 182 hospitalised malaria positive patients, all of whom had P. falciparum. CONCLUSION: During the four year study period at GMC, the number of malaria cases increased substantially and the greatest burden of severe disease was contributed by P. falciparum.


Assuntos
Malária Falciparum/patologia , Malária Vivax/patologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Demografia , Feminino , Humanos , Incidência , Índia/epidemiologia , Lactente , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Malária Vivax/diagnóstico , Malária Vivax/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Centros de Atenção Terciária , Adulto Jovem
4.
Mol Biochem Parasitol ; 210(1-2): 1-4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27457272

RESUMO

Previous whole genome comparisons of Plasmodium falciparum populations have not included collections from the Indian subcontinent, even though two million Indians contract malaria and about 50,000 die from the disease every year. Stratification of global parasites has revealed spatial relatedness of parasite genotypes on different continents. Here, genomic analysis was further improved to obtain country-level resolution by removing var genes and intergenic regions from distance calculations. P. falciparum genomes from India were found to be most closely related to each other. Their nearest neighbors were from Bangladesh and Myanmar, followed by Thailand. Samples from the rest of Southeast Asia, Africa and South America were increasingly more distant, demonstrating a high-resolution genomic-geographic continuum. Such genome stratification approaches will help monitor variations of malaria parasites within South Asia and future changes in parasite populations that may arise from in-country and cross-border migrations.


Assuntos
Genoma de Protozoário , Genômica , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Ásia/epidemiologia , Variação Genética , Genética Populacional , Genômica/métodos , Genótipo , Humanos , Índia/epidemiologia , Malária Falciparum/epidemiologia , Filogenia
5.
J Biol Chem ; 290(33): 20313-24, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26055707

RESUMO

Historically, type II topoisomerases have yielded clinically useful drugs for the treatment of bacterial infections and cancer, but the corresponding enzymes from malaria parasites remain understudied. This is due to the general challenges of producing malaria proteins in functional forms in heterologous expression systems. Here, we express full-length Plasmodium falciparum topoisomerase II (PfTopoII) in a wheat germ cell-free transcription-translation system. Functional activity of soluble PfTopoII from the translation lysates was confirmed through both a plasmid relaxation and a DNA decatenation activity that was dependent on magnesium and ATP. To facilitate future drug discovery, a convenient and sensitive fluorescence assay was established to follow DNA decatenation, and a stable, truncated PfTopoII was engineered for high level enzyme production. PfTopoII was purified using a DNA affinity column. Existing TopoII inhibitors previously developed for other non-malaria indications inhibited PfTopoII, as well as malaria parasites in culture at submicromolar concentrations. Even before optimization, inhibitors of bacterial gyrase, GSK299423, ciprofloxacin, and etoposide exhibited 15-, 57-, and 3-fold selectivity for the malarial enzyme over human TopoII. Finally, it was possible to use the purified PfTopoII to dissect the different modes by which these varying classes of TopoII inhibitors could trap partially processed DNA. The present biochemical advancements will allow high throughput chemical screening of compound libraries and lead optimization to develop new lines of antimalarials.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Plasmodium falciparum/enzimologia , Inibidores da Topoisomerase II/farmacologia , Sequência de Aminoácidos , Animais , Sistema Livre de Células , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/efeitos dos fármacos , DNA Topoisomerases Tipo II/isolamento & purificação , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Triticum/genética
6.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 5): 600-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25945715

RESUMO

The most severe form of malaria is caused by the obligate parasite Plasmodium falciparum. Orotate phosphoribosyltransferase (OPRTase) is the fifth enzyme in the de novo pyrimidine-synthesis pathway in the parasite, which lacks salvage pathways. Among all of the malaria de novo pyrimidine-biosynthesis enzymes, the structure of P. falciparum OPRTase (PfOPRTase) was the only one unavailable until now. PfOPRTase that could be crystallized was obtained after some low-complexity sequences were removed. Four catalytic dimers were seen in the asymmetic unit (a total of eight polypeptides). In addition to revealing unique amino acids in the PfOPRTase active sites, asymmetric dimers in the larger structure pointed to novel parasite-specific protein-protein interactions that occlude the catalytic active sites. The latter could potentially modulate PfOPRTase activity in parasites and possibly provide new insights for blocking PfOPRTase functions.


Assuntos
Orotato Fosforribosiltransferase/química , Orotato Fosforribosiltransferase/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/enzimologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Sequência de Aminoácidos , Cristalização , Dados de Sequência Molecular , Orotato Fosforribosiltransferase/genética , Plasmodium falciparum/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
7.
Eukaryot Cell ; 12(12): 1653-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123271

RESUMO

One decade after the sequencing of the Plasmodium falciparum genome, 95% of malaria proteins in the genome cannot be expressed in traditional cell-based expression systems, and the targets of the best new leads for antimalarial drug discovery are either not known or not available in functional form. For a disease that kills up to 1 million people per year, routine expression of recombinant malaria proteins in functional form is needed both for the discovery of new therapeutics and for identification of targets of new drugs. We tested the general utility of cell-free systems for expressing malaria enzymes. Thirteen test enzyme sequences were reverse amplified from total RNA, cloned into a plant-like expression vector, and subjected to cell-free expression in a wheat germ system. Protein electrophoresis and autoradiography confirmed the synthesis of products of expected molecular masses. In rare problematic cases, truncated products were avoided by using synthetic genes carrying wheat codons. Scaled-up production generated 39 to 354 µg of soluble protein per 10 mg of translation lysate. Compared to rare proteins where cell-based systems do produce functional proteins, the cell-free yields are comparable or better. All 13 test products were enzymatically active, without failure. This general path to produce functional malaria proteins should now allow the community to access new tools, such as biologically active protein arrays, and lead to the discovery of new chemical functions, structures, and inhibitors of previously inaccessible malaria gene products.


Assuntos
Sistema Livre de Células/metabolismo , Expressão Gênica , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/genética , Plasmodium falciparum/genética , Engenharia de Proteínas , Proteínas de Protozoários/metabolismo , Triticum/química
8.
J Biol Chem ; 288(45): 32539-32552, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24072705

RESUMO

The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNA(Gln) biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNA(Glu) and tRNA(Gln), determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNA(Gln) biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids.


Assuntos
Apicoplastos/enzimologia , Glutamato-tRNA Ligase/metabolismo , Plasmodium berghei/enzimologia , Plasmodium falciparum/enzimologia , Biossíntese de Proteínas/fisiologia , Proteínas de Protozoários/metabolismo , Aminoacilação de RNA de Transferência/fisiologia , Apicoplastos/genética , Glutamato-tRNA Ligase/genética , Humanos , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , RNA de Transferência de Glutamina/genética , RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo
9.
J Biol Chem ; 285(21): 15916-22, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20231284

RESUMO

Cryptosporidium spp. cause acute gastrointestinal disease that can be fatal for immunocompromised individuals. These protozoan parasites are resistant to conventional antiparasitic chemotherapies and the currently available drugs to treat these infections are largely ineffective. Genomic studies suggest that, unlike other protozoan parasites, Cryptosporidium is incapable of de novo pyrimidine biosynthesis. Curiously, these parasites possess redundant pathways to produce dTMP, one involving thymidine kinase (TK) and the second via thymidylate synthase-dihydrofolate reductase. Here we report the expression and characterization of TK from C. parvum. Unlike other TKs, CpTK is a stable trimer in the presence and absence of substrates and the activator dCTP. Whereas the values of k(cat) = 0.28 s(-1) and K(m)(,ATP) = 140 microm are similar to those of human TK1, the value of K(m)(thymidine) = 48 microm is 100-fold greater, reflecting the abundance of thymidine in the gastrointestinal tract. Surprisingly, the antiparasitic nucleosides AraT, AraC, and IDC are not substrates for CpTK, indicating that Cryptosporidium possesses another deoxynucleoside kinase. Trifluoromethyl thymidine and 5-fluorodeoxyuridine are good substrates for CpTK, and both compounds inhibit parasite growth in an in vitro model of C. parvum infection. Trifluorothymidine is also effective in a mouse model of acute disease. These observations suggest that CpTK-activated pro-drugs may be an effective strategy for treating cryptosporidiosis.


Assuntos
Antiprotozoários/farmacologia , Criptosporidiose/tratamento farmacológico , Cryptosporidium parvum/enzimologia , Pró-Fármacos/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Timidina Quinase/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Criptosporidiose/enzimologia , Cryptosporidium parvum/genética , Modelos Animais de Doenças , Floxuridina/farmacologia , Genoma de Protozoário , Humanos , Camundongos , Camundongos Knockout , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo
10.
J Mol Biol ; 396(5): 1244-59, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20070944

RESUMO

Purine nucleoside phosphorylases (PNPs) and uridine phosphorylases (UPs) are closely related enzymes involved in purine and pyrimidine salvage, respectively, which catalyze the removal of the ribosyl moiety from nucleosides so that the nucleotide base may be recycled. Parasitic protozoa generally are incapable of de novo purine biosynthesis; hence, the purine salvage pathway is of potential therapeutic interest. Information about pyrimidine biosynthesis in these organisms is much more limited. Though all seem to carry at least a subset of enzymes from each pathway, the dependency on de novo pyrimidine synthesis versus salvage varies from organism to organism and even from one growth stage to another. We have structurally and biochemically characterized a putative nucleoside phosphorylase (NP) from the pathogenic protozoan Trypanosoma brucei and find that it is a homodimeric UP. This is the first characterization of a UP from a trypanosomal source despite this activity being observed decades ago. Although this gene was broadly annotated as a putative NP, it was widely inferred to be a purine nucleoside phosphorylase. Our characterization of this trypanosomal enzyme shows that it is possible to distinguish between PNP and UP activity at the sequence level based on the absence or presence of a characteristic UP-specificity insert. We suggest that this recognizable feature may aid in proper annotation of the substrate specificity of enzymes in the NP family.


Assuntos
Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Uridina Fosforilase/química , Uridina Fosforilase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Primers do DNA/genética , DNA de Protozoário/genética , Genes de Protozoários , Metais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trypanosoma brucei brucei/genética , Uridina Fosforilase/antagonistas & inibidores , Uridina Fosforilase/genética
11.
Mol Biochem Parasitol ; 168(1): 74-83, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19591883

RESUMO

The plant-like, bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) from malaria parasites has been a good target for drug development. Dihydrofolate reductase (DHFR) is inhibited by clinically established antimalarials, pyrimethamine and cycloguanil. Thymidylate synthase (TS) is the target of potent experimental antimalarials such as 5-fluoroorotate and 1843U89. Another enzyme in folate recycling, serine hydroxymethyltransferase (SHMT), produces 5,10-methylenetetrahydrofolate which, in many cells, is required for the de novo, biosynthesis of thymidine and methionine. Thus, the biochemical characterization of malarial SHMT was of interest. The principle, active Plasmodium falciparum SHMT (PfSHMT) was expressed in E. coli and purified using an N-terminal histidine tag. Unlike the plant enzyme, but like the host enzyme, PfSHMT requires the cofactor pyridoxal 5'-phosphate for enzymatic activity. The substrate specificities for serine, tetrahydrofolate, and pyridoxal 5'-phosphate were comparable to those for SHMT from other organisms. Antifolates developed for DHFR and TS inhibited SHMT in the mid-micromolar range, offering insights into the binding preferences of SHMT but clearly leaving room for improved new inhibitors. As previously seen with P. falciparum DHFR-TS, PfSHMT bound its cognate mRNA but not control RNA for actin. RNA binding was not reversed with enzyme substrates. Unlike DHFR-TS, the SHMT RNA-protein interaction was not tight enough to inhibit translation. Another gene PF14_0534, previously proposed to code for an alternate mitochondrial SHMT, was also expressed in E. coli but found to be inactive. This protein, nor DHFR-TS, enhanced the catalytic activity of PfSHMT. The present results set the stage for developing specific, potent inhibitors of SHMT from P. falciparum.


Assuntos
Glicina Hidroximetiltransferase/metabolismo , Plasmodium falciparum/enzimologia , Animais , Cromatografia de Afinidade , Clonagem Molecular , Coenzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Antagonistas do Ácido Fólico/farmacologia , Expressão Gênica , Glicina Hidroximetiltransferase/antagonistas & inibidores , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/isolamento & purificação , Ligação Proteica , Fosfato de Piridoxal/farmacologia , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Serina/metabolismo , Especificidade por Substrato , Tetra-Hidrofolatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...