Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(20): 207003, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501057

RESUMO

We report terahertz (THz) light-induced second harmonic generation, in superconductors with inversion symmetry that forbid even-order nonlinearities. The THz second harmonic emission vanishes above the superconductor critical temperature and arises from precession of twisted Anderson pseudospins at a multicycle, THz driving frequency that is not allowed by equilibrium symmetry. We explain the microscopic physics by a dynamical symmetry breaking principle at sub-THz-cycle by using quantum kinetic modeling of the interplay between strong THz-lightwave nonlinearity and pulse propagation. The resulting nonzero integrated pulse area inside the superconductor leads to light-induced nonlinear supercurrents due to subcycle Cooper pair acceleration, in contrast to dc-biased superconductors, which can be controlled by the band structure and THz driving field below the superconducting gap.

2.
Phys Rev Lett ; 124(15): 157401, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357060

RESUMO

We discover hidden Rashba fine structure in CH_{3}NH_{3}PbI_{3} and demonstrate its quantum control by vibrational coherence through symmetry-selective vibronic (electron-phonon) coupling. Above a critical threshold of a single-cycle terahertz pump field, a Raman phonon mode distinctly modulates the middle excitonic states with persistent coherence for more than ten times longer than the ones on two sides that predominately couple to infrared phonons. These vibronic quantum beats, together with first-principles modeling of phonon periodically modulated Rashba parameters, identify a threefold excitonic fine structure splitting, i.e., optically forbidden, degenerate dark states in between two bright ones with a narrow, ∼3 nm splitting. Harnessing of vibronic quantum coherence and symmetry inspires light-perovskite quantum control and sub-THz-cycle "Rashba engineering" of spin-split bands for ultimate multifunction device.

3.
J Chem Phys ; 151(24): 244706, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893879

RESUMO

We report the discovery of helicity-dependent ultrafast photocurrent generation in organic-inorganic perovskite by measuring terahertz (THz) electric field emissions in the time-domain. We find signatures of the circular photogalvanic effect (CPGE) where right circularly polarized light and left circularly polarized light lead to different photocurrent generation. The direction of photocurrent is also resolved by measuring the polarization of the emitted THz pulses. Furthermore, we observe distinct wavelength-dependent, coherent phonon dynamics using THz pump-induced differential reflectivity, indicative of multiple exciton resonances. Both the CPGE and exciton fine structure, together with theoretical simulations, provide compelling and complementary evidence for the existence of Rashba-type bands in perovskite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...