Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Ann Med ; 55(2): 2255206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37677026

RESUMO

PURPOSE: Many individuals with a lower limb amputation experience problems with the fitting of the socket of their prosthesis, leading to dissatisfaction or device rejection. Osseointegration (OI)- the implantation of a shaft directly interfacing with the remaining bone- is an alternative for these patients. In this observational study, we investigated how bone anchoring influences neuromuscular parameters during balance control in a patient with a unilateral transfemoral amputation. MATERIAL AND METHODS: Center of pressure (CoP) and electromyography (EMG) signals from muscles controlling the hip and the ankle of the intact leg were recorded during quiet standing six months before and one and a half years after this patient underwent an OI surgery. Results were compared to a control group of nine able-bodied individuals. RESULTS: Muscle co-activation and EMG intensity decreased after bone anchoring, approaching the levels of able-bodied individuals. Muscle co-activation controlling the ankle decreased in the high-frequency range, and the EMG intensity spectrum decreased in the lower-frequency range for all muscles when vision was allowed. With eyes closed, the ankle extensor muscle showed an increased EMG intensity in the high-frequency range post-surgery. CoP length increased in the mediolateral direction of the amputated leg. CONCLUSIONS: These findings point to shifts in the patient's neuromuscular profile towards the one of able-bodied individuals.


Assuntos
Amputados , Prótese Ancorada no Osso , Humanos , Osseointegração , Músculo Esquelético , Eletromiografia
2.
Front Bioeng Biotechnol ; 11: 957458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741762

RESUMO

Introduction: Synthetic vascular grafts perform poorly in small-caliber (<6mm) anastomoses, due to intimal hyperplasia and thrombosis, whereas homografts are associated with limited availability and immunogenicity, and bioprostheses are prone to aneurysmal degeneration and calcification. Infection is another important limitation with vascular grafting. This study developed a dual-component graft for small-caliber reconstructions, comprising a decellularized tibial artery scaffold and an antibiotic-releasing, electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) blend sleeve. Methods: The study investigated the effect of nucleases, as part of the decellularization technique, and two sterilization methods (peracetic acid and γ-irradiation), on the scaffold's biological and biomechanical integrity. It also investigated the effect of different PCL/PEG ratios on the antimicrobial, biological and biomechanical properties of the sleeves. Tibial arteries were decellularized using Triton X-100 and sodium-dodecyl-sulfate. Results: The scaffolds retained the general native histoarchitecture and biomechanics but were depleted of glycosaminoglycans. Sterilization with peracetic acid depleted collagen IV and produced ultrastructural changes in the collagen and elastic fibers. The two PCL/PEG ratios used (150:50 and 100:50) demonstrated differences in the structural, biomechanical and antimicrobial properties of the sleeves. Differences in the antimicrobial activity were also found between sleeves fabricated with antibiotics supplemented in the electrospinning solution, and sleeves soaked in antibiotics. Discussion: The study demonstrated the feasibility of fabricating a dual-component small-caliber graft, comprising a scaffold with sufficient biological and biomechanical functionality, and an electrospun PCL/PEG sleeve with tailored biomechanics and antibiotic release.

3.
Semin Thorac Cardiovasc Surg ; 34(1): 238-248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34166811

RESUMO

Treatment of univentricular hearts remains restricted to palliative surgical corrections (Fontan pathway). The established Fontan circulation lacks a subpulmonary pressure source and is commonly accompanied by progressively declining hemodynamics. A novel cavopulmonary assist device (CPAD) may hold the potential for improved therapeutic management of Fontan patients by chronic restoration of biventricular equivalency. This study aimed at translating clinical objectives toward a functional CPAD with preclinical proof regarding hydraulic performance, hemocompatibility and electric power consumption. A prototype composed of hemocompatible titanium components, ceramic bearings, electric motors, and corresponding drive unit was manufactured for preclinical benchtop analysis: hydraulic performance in general and hemocompatibility characteristics in particular were analyzed in-silico (computational fluid dynamics) and validated in-vitro. The CPAD's power consumption was recorded across the entire operational range. The CPAD delivered pressure step-ups across a comprehensive operational range (0-10 L/min, 0-50 mm Hg) with electric power consumption below 1.5 W within the main operating range. In-vitro hemolysis experiments (N = 3) indicated a normalized index of hemolysis of 3.8 ± 1.6 mg/100 L during design point operation (2500 rpm, 4 L/min). Preclinical investigations revealed the CPAD's potential for low traumatic and thrombogenic support of a heterogeneous Fontan population (pediatric and adult) with potentially accompanying secondary disorders (e.g., elevated pulmonary vascular resistance or systemic ventricular insufficiency) at distinct physical activities. The low power consumption implied adequate settings for a small, fully implantable system with transcutaneous energy transfer. The successful preclinical proof provides the rationale for acute and chronic in-vivo trials aiming at the confirmation of laboratory findings and verification of hemodynamic benefit.


Assuntos
Técnica de Fontan , Coração Auxiliar , Adulto , Criança , Técnica de Fontan/efeitos adversos , Coração Auxiliar/efeitos adversos , Hemodinâmica , Hemólise , Humanos , Modelos Cardiovasculares , Resultado do Tratamento
4.
Front Neurosci ; 15: 727527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34588950

RESUMO

Patients with a lower limb amputation rely more on visual feedback to maintain balance than able-bodied individuals. Altering this sensory modality in amputees thus results in a disrupted postural control. However, little is known about how lower limb amputees cope with augmented visual information during balance tasks. In this study, we investigated how unilateral transfemoral amputees incorporate visual feedback of their center of pressure (CoP) position during quiet standing. Ten transfemoral amputees and ten age-matched able-bodied participants were provided with real-time visual feedback of the position of their CoP while standing on a pressure platform. Their task was to keep their CoP within a small circle in the center of a computer screen placed at eye level, which could be achieved by minimizing their postural sway. The visual feedback was then delayed by 250 and 500 ms and was combined with a two- and five-fold amplification of the CoP displacements. Trials with eyes open without augmented visual feedback as well as with eyes closed were further performed. The overall performance was measured by computing the sway area. We further quantified the dynamics of the CoP adjustments using the entropic half-life (EnHL) to study possible physiological mechanisms behind postural control. Amputees showed an increased sway area compared to the control group. The EnHL values of the amputated leg were significantly higher than those of the intact leg and the dominant and non-dominant leg of controls. This indicates lower dynamics in the CoP adjustments of the amputated leg, which was compensated by increasing the dynamics of the CoP adjustments of the intact leg. Receiving real-time visual feedback of the CoP position did not significantly reduce the sway area neither in amputees nor in controls when comparing with the eyes open condition without visual feedback of the CoP position. Further, with increasing delay and amplification, both groups were able to compensate for small visual perturbations, yet their dynamics were significantly lower when additional information was not received in a physiologically relevant time frame. These findings may be used for future design of neurorehabilitation programs to restore sensory feedback in lower limb amputees.

5.
Adv Biol (Weinh) ; 5(5): e2000199, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34028212

RESUMO

The regulation of cell-cell adhesions in space and time plays a crucial role in cell biology, especially in the coordination of multicellular behavior. Therefore, tools that allow for the modulation of cell-cell interactions with high precision are of great interest to a better understanding of their roles and building tissue-like structures. Herein, the green light-responsive protein CarH is expressed at the plasma membrane of cells as an artificial cell adhesion receptor, so that upon addition of its cofactor vitamin B12 specific cell-cell interactions form and lead to cell clustering in a concentration-dependent manner. Upon green light illumination, the CarH based cell-cell interactions disassemble and allow for their reversion with high spatiotemporal control. Moreover, these artificial cell-cell interactions impact cell migration, as observed in a wound-healing assay. When the cells interact with each other in the presence of vitamin B12 in the dark, the cells form on a solid front and migrate collectively; however, under green light illumination, individual cells migrate randomly out of the monolayer. Overall, the possibility of precisely controlling cell-cell interactions and regulating multicellular behavior is a potential pathway to gaining more insight into cell-cell interactions in biological processes.


Assuntos
Comunicação Celular , Vitamina B 12 , Adesão Celular , Luz
6.
ACS Synth Biol ; 9(8): 2076-2086, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32610009

RESUMO

The self-assembly of different cell types into multicellular structures and their organization into spatiotemporally controlled patterns are both challenging and extremely powerful to understand how cells function within tissues and for bottom-up tissue engineering. Here, we not only independently control the self-assembly of two cell types into multicellular architectures with blue and red light, but also achieve their self-sorting into distinct assemblies. This required developing two cell types that form selective and homophilic cell-cell interactions either under blue or red light using photoswitchable proteins as artificial adhesion molecules. The interactions were individually triggerable with different colors of light, reversible in the dark, and provide noninvasive and temporal control over the cell-cell adhesions. In mixtures of the two cells, each cell type self-assembled independently upon orthogonal photoactivation, and cells sorted out into separate assemblies based on specific self-recognition. These self-sorted multicellular architectures provide us with a powerful tool for producing tissue-like structures from multiple cell types and investigate principles that govern them.


Assuntos
Adesão Celular/efeitos da radiação , Luz , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Optogenética , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
7.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512889

RESUMO

For decades, the unique regenerative properties of the human amniotic membrane (hAM) have been successfully utilized in ophthalmology. As a directly applied biomaterial, the hAM should be available in a ready to use manner in clinical settings. However, an extended period of time is obligatory for performing quality and safety tests. Hence, the low temperature storage of the hAM is a virtually inevitable step in the chain from donor retrieval to patient application. At the same time, the impact of subzero temperatures carries an increased risk of irreversible alterations of the structure and composition of biological objects. In the present study, we performed a comprehensive analysis of the hAM as a medicinal product; this is intended for a novel strategy of application in ophthalmology requiring a GMP production protocol including double freezing-thawing cycles. We compared clinically relevant parameters, such as levels of growth factors and extracellular matrix proteins content, morphology, ultrastructure and mechanical properties, before and after one and two freezing cycles. It was found that epidermal growth factor (EGF), transforming growth factor beta 1 (TGF-ß1), hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), hyaluronic acid, and laminin could be detected in all studied conditions without significant differences. Additionally, histological and ultrastructure analysis, as well as transparency and mechanical tests, demonstrated that properties of the hAM required to support therapeutic efficacy in ophthalmology are not impaired by dual freezing.


Assuntos
Âmnio/química , Âmnio/fisiologia , Congelamento , Oftalmologia , Âmnio/ultraestrutura , Microscopia Crioeletrônica , Criopreservação , Humanos , Fenômenos Mecânicos , Oftalmologia/métodos
8.
Front Bioeng Biotechnol ; 8: 604123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425870

RESUMO

Mesenchymal stem/stromal cells (MSCs) exert beneficial effects during wound healing, and cell-seeded scaffolds are a promising method of application. Here, we compared the suitability of a clinically used collagen/elastin scaffold (Matriderm) with an electrospun Poly(ε-caprolactone)/poly(l-lactide) (PCL/PLA) scaffold as carriers for human amnion-derived MSCs (hAMSCs). We created an epidermal-like PCL/PLA scaffold and evaluated its microstructural, mechanical, and functional properties. Sequential spinning of different PCL/PLA concentrations resulted in a wide-meshed layer designed for cell-seeding and a dense-meshed layer for apical protection. The Matriderm and PCL/PLA scaffolds then were seeded with hAMSCs, with or without Matrigel coating. The quantity and quality of the adherent cells were evaluated in vitro. The results showed that hAMSCs adhered to and infiltrated both scaffold types but on day 3, more cells were observed on PCL/PLA than on Matriderm. Apoptosis and proliferation rates were similar for all carriers except the coated Matriderm, where apoptotic cells were significantly enhanced. On day 8, the number of cells decreased on all carrier types except the coated Matriderm, which had consistently low cell numbers. Uncoated Matriderm had the highest percentage of proliferative cells and lowest apoptosis rate of all carrier types. Each carrier also was topically applied to skin wound sites in a mouse model and analyzed in vivo over 14 days via optical imaging and histological methods, which showed detectable hAMSCs on all carrier types on day 8. On day 14, all wounds exhibited newly formed epidermis, and all carriers were well-integrated into the underlying dermis and showing signs of degradation. However, only wounds treated with uncoated PCL/PLA maintained a round appearance with minimal contraction. Overall, the results support a 3-day in vitro culture of scaffolds with hAMSCs before wound application. The PCL/PLA scaffold showed higher cell adherence than Matriderm, and the effect of the Matrigel coating was negligible, as all carrier types maintained sufficient numbers of transplanted cells in the wound area. The anti-contractive effects of the PCL/PLA scaffold offer potential new therapeutic approaches to wound care.

9.
Nano Lett ; 20(4): 2257-2263, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31751141

RESUMO

Building tissue from cells as the basic building block based on principles of self-assembly is a challenging and promising approach. Understanding how far principles of self-assembly and self-sorting known for colloidal particles apply to cells remains unanswered. In this study, we demonstrate that not just controlling the cell-cell interactions but also their dynamics is a crucial factor that determines the formed multicellular structure, using photoswitchable interactions between cells that are activated with blue light and reverse in the dark. Tuning dynamics of the cell-cell interactions by pulsed light activation results in multicellular architectures with different sizes and shapes. When the interactions between cells are dynamic, compact and round multicellular clusters under thermodynamic control form, while otherwise branched and loose aggregates under kinetic control assemble. These structures parallel what is known for colloidal assemblies under reaction- and diffusion-limited cluster aggregation, respectively. Similarly, dynamic interactions between cells are essential for cells to self-sort into distinct groups. Using four different cell types, which expressed two orthogonal cell-cell interaction pairs, the cells sorted into two separate assemblies. Bringing concepts of colloidal self-assembly to bottom-up tissue engineering provides a new theoretical framework and will help in the design of more predictable tissue-like structures.


Assuntos
Comunicação Celular , Engenharia Tecidual/métodos , Linhagem Celular Tumoral , Movimento Celular , Humanos , Luz , Optogenética , Processos Fotoquímicos , Termodinâmica
10.
Adv Biosyst ; 3(4): e1800310, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-32627428

RESUMO

Controlling cell-cell interactions is central for understanding key cellular processes and bottom-up tissue assembly from single cells. The challenge is to control cell-cell interactions dynamically and reversibly with high spatiotemporal precision noninvasively and sustainably. In this study, cell-cell interactions are controlled with visible light using an optogenetic approach by expressing the blue light switchable proteins CRY2 or CIBN on the surfaces of cells. CRY2 and CIBN expressing cells form specific heterophilic interactions under blue light providing precise control in space and time. Further, these interactions are reversible in the dark and can be repeatedly and dynamically switched on and off. Unlike previous approaches, these genetically encoded proteins allow for long-term expression of the interaction domains and respond to nontoxic low intensity blue light. In addition, these interactions are suitable to assemble cells into 3D multicellular architectures. Overall, this approach captures the dynamic and reversible nature of cell-cell interactions and controls them noninvasively and sustainably both in space and time. This provides a new way of studying cell-cell interactions and assembling cellular building blocks into tissues with unmatched flexibility.


Assuntos
Comunicação Celular , Optogenética/métodos , Engenharia Tecidual/métodos , Comunicação Celular/genética , Comunicação Celular/fisiologia , Comunicação Celular/efeitos da radiação , Linhagem Celular Tumoral , Criptocromos/genética , Criptocromos/metabolismo , Humanos , Luz
11.
Histochem Cell Biol ; 151(4): 343-356, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30560287

RESUMO

Histological processing of thermosensitive electrospun poly(ε-caprolactone)/poly(L-lactide) (PCL/PLA) scaffolds fails, as poly(ε-caprolactone) (PCL) is characterized by its low-melting temperature (Tm = 60 °C). Here, we present an optimized low-temperature preparation method for the histological processing of un-/cellularized thermosensitive PCL/PLA scaffolds.Our study is aimed at the establishment of an optimized dehydration and low-melting-point paraffin-embedding method of electrospun PCL/PLA scaffolds (un-/cellularized). Furthermore, we compared this method with (a) automatized dehydration and standard paraffin embedding, (b) gelatin embedding followed by automatized dehydration and standard paraffin embedding, (c) cryofixation, and (d) acrylic resin embedding methods. We investigated pepsin and proteinase K antigen retrieval for their efficiency in epitope demasking at low temperatures and evaluated protocols for immunohistochemistry and immunofluorescence for cytokeratin 7 (CK7) and in situ padlock probe technology for beta actin (ACTB). Optimized dehydration and low-melting-point paraffin embedding preserved the PCL/PLA scaffold, as the diameter and structure of its fibers were unchanged. Cells attached to the PCL/PLA scaffolds showed limited alterations in size and morphology compared to control. Epitope demasking by enzymatic pepsin digestion and immunostaining of CK7 displayed an invasion of attached cells into the scaffold. Expression of ACTB and CK7 was shown by a combination of mRNA-based in situ padlock probe technology and immunofluorescence. In contrast, gelatin stabilization followed by standard paraffin embedding led to an overall shrinkage and melting of fibers, and therefore, no further analysis was possible. Acrylic resin embedding and cyrofixation caused fiber structures that were nearly unchanged in size and diameter. However, acrylic resin-embedded scaffolds are limited to 3 µm sections, whereas cyrofixation led to a reduction of the cell size by 14% compared to low-melting paraffin embedding. The combination of low-melting-point paraffin embedding and pepsin digestion as an antigen retrieval method offers a successful opportunity for histological investigations in thermosensitive specimens.


Assuntos
Inclusão em Parafina , Poliésteres/química , Temperatura de Transição , Células Cultivadas , Gelatina/análise , Humanos , Queratina-7/análise
12.
Int J Artif Organs ; 41(11): 687-689, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30278804
13.
Materials (Basel) ; 10(12)2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29207566

RESUMO

The differentiation potential of mesenchymal stem cells (MSC) has been extensively tested on electrospun scaffolds. However, this potential is often assessed with lineage-specific medium, making it difficult to interpret the real contribution of the properties of the scaffold in the cell response. In this study, we analyzed the ability of different polycaprolactone/polylactic acid PCL/PLA electrospun scaffolds (pure or blended compositions, random or aligned fibers, various fiber diameters) to drive MSC towards bone or tendon lineages in the absence of specific differentiation medium. C3H10T1/2 cells (a mesenchymal stem cell model) were cultured on scaffolds for 96 h without differentiation factors. We performed a cross-analysis of the cell-scaffold interactions (spreading, organization, and specific gene expression) with mechanical (elasticity), morphological (porosity, fibers diameter and orientation) and surface (wettability) characterizations of the electrospun fibers. We concluded that (1) osteogenic differentiation can be initiated on pure PCL-based electrospun scaffolds without specific culture conditions; (2) fiber alignment modified cell organization in the short term and (3) PLA added to PCL with an increased fiber diameter encouraged the stem cells towards the tendon lineage without additional tenogenic factors. In summary, the differentiation potential of stem cells on adapted electrospun fibers could be achieved in factor-free medium, making possible future applications in clinically relevant situations.

14.
Sci Rep ; 7(1): 8031, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28808348

RESUMO

Bacteremia is a life-threatening condition for which antibiotics must be prescribed within hours of clinical diagnosis. Since the current gold standard for bacteremia diagnosis is based on conventional methods developed in the mid-1800s-growth on agar or in broth-identification and susceptibility profiling for both Gram-positive and Gram-negative bacterial species requires at least 48-72 h. Recent advancements in accelerated phenotypic antibiotic susceptibility testing have centered on the microscopic growth analysis of small bacterial populations. These approaches are still inherently limited by the bacterial growth rate. Our approach is fundamentally different. By applying environmental stress to bacteria in a microfluidic platform, we can correctly assign antibiotic susceptibility profiles of clinically relevant Gram-negative bacteria within two hours of antibiotic introduction rather than 8-24 h. The substantial expansion to include a number of clinical isolates of important Gram-negative species-Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa-reported here underscores the broad utility of our approach, complementing the method's proven utility for Gram-positive bacteria. We also demonstrate that the platform is compatible with antibiotics that have varying mechanisms of action-meropenem, gentamicin, and ceftazidime-highlighting the versatility of this platform.


Assuntos
Técnicas Bacteriológicas/métodos , Farmacorresistência Bacteriana , Enterobacteriaceae/efeitos dos fármacos , Microfluídica/métodos , Fenótipo , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Técnicas Bacteriológicas/instrumentação , Enterobacteriaceae/classificação , Microfluídica/instrumentação , Pseudomonas aeruginosa/classificação , Estresse Fisiológico
15.
Injury ; 43(10): 1712-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22795727

RESUMO

INTRODUCTION: Bone strength determines fracture risk and fixation strength of osteosynthesis implants. In vivo, bone strength is currently measured indirectly by quantifying bone mineral density (BMD) which is however only one determinant of the bone's biomechanical competence besides the bone's macro- and micro-architecture and tissue related parameters. We have developed a measurement principle (DensiProbe™ Hip) for direct, mechanical quantification of bone strength within the proximal femur upon hip fracture fixation. Previous cadaver tests indicated a close correlation between DensiProbe™ Hip measurements, 3D micro-CT analysis and biomechanical indicators of bone strength. The goal of this study was to correlate DensiProbe™ Hip measurements with areal bone mineral density (BMD). METHODS: Forty-three hip fracture patients were included in this study. Intraoperatively, DensiProbe™ Hip was inserted to the subsequent hip screw tip position within the femoral head. Peak torque to breakaway of local cancellous bone was registered. Thirty-seven patients underwent areal BMD measurements of the contralateral proximal femur. Failure of fixation was assessed radio graphically 6 and 12 weeks postoperatively. RESULTS: Peak torque and femoral neck BMD showed significant correlations (R=0.60, P=0.0001). In regression analysis, areal BMD explained 46% of femoral neck BMD variance in a quadratic relationship. Throughout the 12-week follow-up period, no failure of fixation was observed. CONCLUSIONS: DensiProbe™ Hip may capture variations of bone strength beyond areal BMD which are currently difficult to measure in vivo. A multicenter study will clarify if peak torque predicts fixation failure.


Assuntos
Parafusos Ósseos , Fraturas do Fêmur/fisiopatologia , Fêmur/fisiopatologia , Fixação Interna de Fraturas/métodos , Torque , Absorciometria de Fóton , Idoso , Fenômenos Biomecânicos , Densidade Óssea , Cadáver , Feminino , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/cirurgia , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Seguimentos , Fixação Interna de Fraturas/instrumentação , Humanos , Masculino , Valor Preditivo dos Testes , Interpretação de Imagem Radiográfica Assistida por Computador , Suporte de Carga
16.
J Control Release ; 162(1): 159-66, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22709589

RESUMO

Biodegradable poly(lactide-co-glycolide) (PLGA) microspheres (MS) deliver antigens and toll like receptor (TLR) ligands to antigen presenting cells (APC) in vitro and in vivo. PLGA-MS-microencapsulated model antigens are efficiently presented on MHC class I and II molecules of dendritic cells and stimulate strong cytotoxic and T helper cell responses enabling the eradication of pre-existing model tumors. The application of tumor lysates as a source of antigen for immunotherapy has so far not been very successful also due to a lack of suitable delivery systems. In this study we used PLGA-MS with co-encapsulated tumor lysates and CpG oligodeoxynucleotides (CpG-ODN) as well as microencapsulated polyI:C in order to elicit anti-tumor responses. Immunization of mice with such mixtures of MS yielded substantial cytotoxic T cell (CTL) responses and interfered with tumor growth in TRAMP mice, a pre-clinical transgenic mouse model of prostate carcinoma, which has previously resisted dendritic cell-based therapy. As an important step towards clinical application of PLGA-MS, we could show that γ-irradiation of PLGA-MS sterilized the MS, without reducing their efficacy in eliciting CTL and anti-tumor responses in subcutaneous tumor grafts. Since PLGA is approved for clinical application, sterilized PLGA-MS containing tumor lysates and TLR ligands hold promise as anti-tumor vaccines against prostate carcinoma in humans.


Assuntos
Adenocarcinoma/terapia , Adjuvantes Imunológicos/uso terapêutico , Ácido Láctico/química , Oligodesoxirribonucleotídeos/uso terapêutico , Ácido Poliglicólico/química , Próstata/patologia , Neoplasias da Próstata/terapia , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Linhagem Celular , Portadores de Fármacos/química , Humanos , Imunização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligodesoxirribonucleotídeos/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Próstata/efeitos dos fármacos , Próstata/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia
17.
Atherosclerosis ; 222(2): 337-43, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22446027

RESUMO

OBJECTIVE: Proliferation signal inhibitors/mTOR-inhibitors have been shown to reduce de novo development of hypercholesterolemic atherosclerosis in animal models. However, their effect on pre-existing atherosclerosis has not yet been studied. METHODS AND RESULTS: Feeding LDL-R-KO mice a high cholesterol diet for 12 weeks resulted in formation of moderate fibroatheroma (induction phase). Sixty mice received either everolimus (1 or 5 mg/kg) or no everolimus for further 12 weeks (treatment phase). Everolimus significantly enhanced hypercholesterolemia (plasma cholesterol +45%, p<0.001). Atherosclerosis progressed obstructively in treated and non-treated mice. Everolimus (5 mg/kg) tended to reduced progression in aortic root lesions (0.28±0.02 vs. 0.33±0.03 mm(2), p=ns) and brachiocephalic lesions (0.044±0.006 vs. 0.066±0.012 mm(2), p=ns) but without significance. Everolimus (5mg/kg) resulted in an arrest of CD68 positive plaque area (p=0.03) and nearly halved CD68 fraction (p=0.05) in aortic root lesions but not in brachiocephalic lesions. Taken together, despite a trend to reduced progression and inflammatory cell content there was less conclusive net effect of everolimus treatment than expected. CONCLUSION: A higher potential of everolimus in the treatment of atherosclerosis might be obscured by its concomitant hypercholesterolemia. Considering stronger effects in previous studies we suggest that everolimus might exert more potent anti-atherogenic properties in earlier stages of atherogenesis than in advanced atherosclerosis.


Assuntos
Aorta/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Tronco Braquiocefálico/efeitos dos fármacos , Hipercolesterolemia/complicações , Inibidores de Proteínas Quinases/farmacologia , Receptores de LDL/deficiência , Sirolimo/análogos & derivados , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aorta/enzimologia , Aorta/patologia , Aterosclerose/sangue , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/sangue , Tronco Braquiocefálico/enzimologia , Tronco Braquiocefálico/patologia , Colesterol/sangue , Modelos Animais de Doenças , Everolimo , Hipercolesterolemia/sangue , Hipercolesterolemia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica , Receptores de LDL/genética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
18.
J Immunol ; 187(5): 2112-21, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21795597

RESUMO

The analysis of cell types involved in cross-priming of particulate Ag is essential to understand and improve immunotherapies using microparticles. In this study, we show that murine splenic dendritic cells (DCs) as well as macrophages (MΦs) are able to efficiently endocytose poly(D,L-lactate-co-glycolate) acid (PLGA) microspheres (MS) and to cross-present encapsulated Ags in the context of MHC class I molecules in vitro. A comparison of purified CD8(+) and CD8(-) DCs indicated that both DC subtypes are able to present OVA-derived epitopes on MHC class I and II in vitro. To determine the contribution of DCs and MΦs to cross-priming of PLGA MS in vivo, DCs were depleted in transgenic CD11c-DTR mice, and MΦs were depleted by clodronate liposomes in wild-type mice before immunizing mice with OVA-encapsulated MS. Our results show that the depletion of DCs or MΦs alone only led to minor differences in the OVA-specific immune responses. However, simultaneous depletion of DCs and MΦs caused a strong reduction of primed effector cells, indicating a redundancy of both cell populations for the priming of PLGA MS-encapsulated Ag. Finally, we analyzed PLGA MS trafficking to draining lymph nodes after s.c. injection. It was evident that fluorescent particles accumulated within draining lymph nodes over time. Further analysis of PLGA MS-positive lymphatic cells revealed that mainly CD8(-) DCs and MΦs contained MS. Moreover, immune responses in BATF3 knockout mice lacking CD8(+) DCs were normal. The results presented in this work strongly suggest that in vivo cross-priming of PLGA MS-encapsulated Ag is performed by CD8(-) DCs and MΦs.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD8/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Animais , Antígenos CD8/biossíntese , Separação Celular , Células Dendríticas/metabolismo , Citometria de Fluxo , Ácido Láctico/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microesferas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
19.
Int J Cancer ; 129(2): 407-16, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21207410

RESUMO

In experimental tumor immunotherapy, incomplete Freund's adjuvant (IFA) has been considered as the "gold standard" for T-cell vaccination in mice and humans in spite of its considerable adverse effects. Recently, we succeeded in eliciting strong CTL responses in mice after vaccination with biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microspheres (MS). In our study, we compared the immune response to IFA and PLGA-MS containing ovalbumin (OVA) and CpG-oligodeoxynucleotide (MS-OVA/CpG) or we used a mixture of MS-OVA/CpG and MS-polyI:C. A single vaccination with MS-OVA/CpG elicited long-lasting titers of IgG1 and IgG2a, but only low IgE titers, and also the T-cell response was biased toward Th(1) differentiation. Antigen presentation to CD4(+) and CD8(+) cells and activation of a cytotoxic T-cell response in mice vaccinated with PLGA-MS and IFA lasted for over 3 weeks. Preconditioning of the injection site with TNF-α and heterologous prime-boost regimen further enhanced the cytotoxic response. PLGA-MS were as efficient or superior to IFA in eradication of preexisting tumors and suppression of lung metastases. Taken together, PLGA-MS are well-defined, biodegradable and clinically compatible antigen carrier systems that compare favorably with IFA in their efficacy of tumor immunotherapy in mouse models and hence deserve to be tested for their effectiveness against human malignant diseases.


Assuntos
Imunoterapia/métodos , Ácido Láctico/química , Melanoma/terapia , Microesferas , Ácido Poliglicólico/química , Timoma/terapia , Neoplasias do Timo/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Adjuvante de Freund/imunologia , Ácido Láctico/imunologia , Lipídeos/imunologia , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos , Ovalbumina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Linfócitos T Citotóxicos/imunologia , Timoma/imunologia , Neoplasias do Timo/imunologia , Resultado do Tratamento
20.
J Drug Target ; 17(8): 652-61, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19622019

RESUMO

Poly(lactide-co-glycolide) (PLGA) microparticles (MP) possess immunological adjuvant properties. Yet, exploitation of their full potential has just begun. The purpose of this study was to explore opportunities arising from surface modifications, and attachment and entrapment of combinations of antigen and a Toll-like receptor (TLR) ligand. The cytotoxic T lymphocyte (CTL)-restricted OVA ovalbumin peptide SIINFEKL was microencapsulated into bare, chitosan-coated, and protamine-coated PLGA MP using a microextrusion-assisted solvent extraction process. A TLR-ligand (CpG ODN) was either covalently coupled or physically adsorbed onto the MP surface. The peptide encapsulation efficiency decreased from 71% for uncoated particles to 62% and 45% upon coating with chitosan and protamine, respectively. CpG adsorption efficiency decreased from 93% for protamine-coated particles to 19% and 8% for chitosan and bare particles. Release of the adsorbed CpG was slow and incomplete (23% within 7 days) with the protamine coating, intermediate (>90% within 3 days) with the chitosan coating, and immediate (100% within 3 h) without coating. Interestingly, only the uncoated PLGA MP with adsorbed CpG mediated a prominent CTL response in mice at 6 days after immunization, as determined from IFN-gamma release from antigen-specific CD8+ cells; failure of the other MP formulations was ascribed to the low release of antigen and CpG within the first week after immunization. The study illustrates novel opportunities for PLGA MP vaccines by combining antigens and immunostimulatory ligands.


Assuntos
Ácido Láctico/química , Oligodesoxirribonucleotídeos/administração & dosagem , Ovalbumina/administração & dosagem , Ácido Poliglicólico/química , Linfócitos T Citotóxicos/imunologia , Animais , Cápsulas , Quitosana/química , Feminino , Interferon gama/imunologia , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/imunologia , Ovalbumina/imunologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Protaminas/química , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...