Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36829714

RESUMO

Biomimetic nanocrystalline apatites analogous to bone mineral can be prepared using soft chemistry. Due to their high similarity to bone apatite, as opposed to stoichiometric hydroxyapatite for example, they now represent an appealing class of compounds to produce bioactive ceramics for which drug delivery and ion exchange abilities have been described extensively. However, immersion in aqueous media of dried non-carbonated biomimetic apatite crystals may generate an acidification event, which is often disregarded and not been clarified to-date. Yet, this acidification process could limit their further development if it is not understood and overcome if necessary. This may, for example, alter biological test outcomes, during their evaluation as bone repair materials, due to potentially deleterious effects of the acidic environment on cells, especially in in vitro static conditions. In this study, we explore the origins of this acidification phenomenon based on complementary experimental data and we point out the central role of the hydrated ionic layer present on apatite nanocrystals. We then propose a practical strategy to circumvent this acidification effect using an adequate post-precipitation equilibration step that was optimized. Using this enutralization protocol, we then showed the possibility of performing (micro)biological assessments on such compounds and provide an illustration with the examples of post-equilibrated Cu2+- and Ag+-doped nanocrystalline apatites. We demonstrate their non-cytotoxicity to osteoblast cells and their antibacterial features as tested versus five major pathogens involved in bone infections, therefore pointing to their relevance in the field of antibacterial bone substitutes. The preliminary in vivo implantation of a relevant sample in a rat's calvarial defect confirmed its biocompatibility and the absence of adverse reaction. Understanding and eliminating this technical barrier should help promoting biomimetic apatites as a genuine new class of biomaterial-producing compounds for bone regeneration applications, e.g., with antibacterial features, far from being solely considered as "laboratory curiosities".

2.
Liver Int ; 38(3): 523-531, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28853202

RESUMO

BACKGROUND & AIMS: Ursodeoxycholic acid (UDCA) is a secondary hydrophilic bile acid (BA) used as therapy for a range of hepatobiliary diseases. Its efficacy in non-alcoholic fatty liver disease (NAFLD) is still under debate. Here, we aimed to decipher molecular mechanisms of UDCA in regulating endoplasmic reticulum (ER) homeostasis, apoptosis and oxidative stress in morbidly obese patients. METHODS: In this randomized controlled pharmacodynamic study, liver and serum samples from 40 well-matched morbidly obese NAFLD-patients were analysed. Patients received UDCA (20 mg/kg/d) or no treatment 3 weeks before samples were obtained during bariatric surgery. RESULTS: Patients treated with UDCA displayed higher scoring of steatosis (S), activity (A) and fibrosis (F), the so called SAF-scoring. UDCA partially disrupted ER homeostasis by inducing the expression of the ER stress markers CHOP and GRP78. However, ERDJ4 and sXBP1 levels were unaffected. Enhanced CHOP expression, a suggested pro-apoptotic trigger, failed to induce apoptosis via BAK and BAX in the UDCA treated group. Potentially pro-apoptotic miR-34a was reduced in the vesicle-free fraction in serum but not in liver after UDCA treatment. Thiobarbituric acid reactive substances, 4-hydroxynonenal and mRNA levels of several oxidative stress indicators remained unchanged after UDCA treatment. CONCLUSION: Our data suggest that UDCA treatment has ambivalent effects in NAFLD patients. While increased SAF-scores and elevated CHOP levels may be disadvantageous in the UDCA treated cohort, UDCA's cytoprotective properties potentially changed the apoptotic threshold as reflected by absent induction of pro-apoptotic triggers. UDCA treatment failed to improve the oxidative stress status in NAFLD patients.


Assuntos
Apoptose/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade Mórbida/complicações , Estresse Oxidativo/efeitos dos fármacos , Ácido Ursodesoxicólico/uso terapêutico , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Fígado/metabolismo , MicroRNAs/sangue , Hepatopatia Gordurosa não Alcoólica/metabolismo , Suécia , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
3.
Mol Endocrinol ; 29(9): 1320-33, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26192107

RESUMO

Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.


Assuntos
Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético/fisiologia , PPAR gama/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala , Humanos , Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Interferente Pequeno , Rosiglitazona , Tiazolidinedionas/farmacologia , Enzimas de Conjugação de Ubiquitina/genética
4.
J Hepatol ; 62(6): 1398-404, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25617503

RESUMO

BACKGROUND & AIMS: Bile acids (BAs) are major regulators of hepatic BA and lipid metabolism but their mechanisms of action in non-alcoholic fatty liver disease (NAFLD) are still poorly understood. Here we aimed to explore the molecular and biochemical mechanisms of ursodeoxycholic acid (UDCA) in modulating the cross-talk between liver and visceral white adipose tissue (vWAT) regarding BA and cholesterol metabolism and fatty acid/lipid partitioning in morbidly obese NAFLD patients. METHODS: In this randomized controlled pharmacodynamic study, we analyzed serum, liver and vWAT samples from 40 well-matched morbidly obese patients receiving UDCA (20 mg/kg/day) or no treatment three weeks prior to bariatric surgery. RESULTS: Short term UDCA administration stimulated BA synthesis by reducing circulating fibroblast growth factor 19 and farnesoid X receptor (FXR) activation, resulting in cholesterol 7α-hydroxylase induction mirrored by elevated C4 and 7α-hydroxycholesterol. Enhanced BA formation depleted hepatic and LDL-cholesterol with subsequent activation of the key enzyme of cholesterol synthesis 3-hydroxy-3-methylglutaryl-CoA reductase. Blunted FXR anti-lipogenic effects induced lipogenic stearoyl-CoA desaturase (SCD) in the liver, thereby increasing hepatic triglyceride content. In addition, induced SCD activity in vWAT shifted vWAT lipid metabolism towards generation of less toxic and more lipogenic monounsaturated fatty acids such as oleic acid. CONCLUSION: These data demonstrate that by exerting FXR-antagonistic effects, UDCA treatment in NAFLD patients strongly impacts on cholesterol and BA synthesis and induces neutral lipid accumulation in both liver and vWAT.


Assuntos
Ácidos e Sais Biliares/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade Mórbida/tratamento farmacológico , Obesidade Mórbida/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Ácido Ursodesoxicólico/farmacologia , Ácidos e Sais Biliares/biossíntese , Humanos , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Oleico/metabolismo , Estearoil-CoA Dessaturase/biossíntese , Ácido Ursodesoxicólico/administração & dosagem
5.
J Hepatol ; 62(4): 871-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25463533

RESUMO

BACKGROUND & AIMS: Intrahepatic granuloma formation and fibrosis characterize the pathological features of Schistosoma mansoni infection. Based on previously observed substantial anti-fibrotic effects of 24-nor-ursodeoxycholic acid (norUDCA) in Abcb4/Mdr2(-/-) mice with cholestatic liver injury and biliary fibrosis, we hypothesized that norUDCA improves inflammation-driven liver fibrosis in S. mansoni infection. METHODS: Adult NMRI mice were infected with 50 S. mansoni cercariae and after 12 weeks received either norUDCA- or ursodeoxycholic acid (UDCA)-enriched diet (0.5% wt/wt) for 4 weeks. Bile acid effects on liver histology, serum biochemistry, key regulatory cytokines, hepatic hydroxyproline content as well as granuloma formation were compared to naive mice and infected controls. In addition, effects of norUDCA on primary T-cell activation/proliferation and maturation of the antigen-presenting-cells (dendritic cells, macrophages) were determined in vitro. RESULTS: UDCA as well as norUDCA attenuated the inflammatory response in livers of S. mansoni infected mice, but exclusively norUDCA changed cellular composition and reduced size of hepatic granulomas as well as TH2-mediated hepatic fibrosis in vivo. Moreover, norUDCA affected surface expression level of major histocompatibility complex (MHC) class II of macrophages and dendritic cells as well as activation/proliferation of T-lymphocytes in vitro, whereas UDCA had no effect. CONCLUSIONS: This study demonstrates pronounced anti-inflammatory and anti-fibrotic effects of norUDCA compared to UDCA in S. mansoni induced liver injury, and indicates that norUDCA directly represses antigen presentation of antigen presenting cells and subsequent T-cell activation in vitro. Therefore, norUDCA represents a promising drug for the treatment of this important cause of liver fibrosis.


Assuntos
Granuloma , Cirrose Hepática , Esquistossomose mansoni , Ácido Ursodesoxicólico/análogos & derivados , Animais , Colagogos e Coleréticos/metabolismo , Colagogos e Coleréticos/farmacologia , Modelos Animais de Doenças , Monitoramento de Medicamentos , Granuloma/tratamento farmacológico , Granuloma/imunologia , Granuloma/patologia , Imuno-Histoquímica , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Esquistossomose mansoni/complicações , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/patologia , Esquistossomose mansoni/fisiopatologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Resultado do Tratamento , Ácido Ursodesoxicólico/metabolismo , Ácido Ursodesoxicólico/farmacologia
6.
Biochim Biophys Acta ; 1842(7): 959-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24594481

RESUMO

UNLABELLED: Methionine-choline-deficient (MCD) diet is a widely used dietary model of non-alcoholic steatohepatitis (NASH) in rodents. However, the contribution of adipose tissue to MCD-induced steatosis, and inflammation as features of NASH are not fully understood. The goal of this study was to elucidate the role of adipose tissue fatty acid (FA) metabolism, adipogenesis, lipolysis, inflammation and subsequent changes in FA profiles in serum and liver in the pathogenesis of steatohepatitis. We therefore fed ob/ob mice with control or MCD diet for 5 weeks. MCD-feeding increased adipose triglyceride lipase and hormone sensitive lipase activities in all adipose depots which may be attributed to increased systemic FGF21 levels. The highest lipase enzyme activity was exhibited by visceral WAT. Non-esterified fatty acid (NEFA)-18:2n6 was the predominantly elevated FA species in serum and liver of MCD-fed ob/ob mice, while overall serum total fatty acid (TFA) composition was reduced. In contrast, an overall increase of all FA species from TFA pool was found in liver, reflecting the combined effects of increased FA flux to liver, decreased FA oxidation and decrease in lipase activity in liver. NAFLD activity score was increased in liver, while WAT showed no changes and BAT showed even reduced inflammation. CONCLUSION: This study demonstrates a key role for adipose tissue lipases in the pathogenesis of NASH and provides a comprehensive lipidomic profiling of NEFA and TFA homeostasis in serum and liver. Our findings provide novel mechanistic insights for the role of WAT in progression of MCD-induced liver injury.


Assuntos
Tecido Adiposo/patologia , Colina/metabolismo , Fígado Gorduroso/patologia , Metionina/deficiência , Adipogenia/fisiologia , Tecido Adiposo/metabolismo , Animais , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Lipase/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipólise/fisiologia , Fígado/metabolismo , Fígado/patologia , Metionina/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica , Obesidade/metabolismo , Obesidade/patologia , Oxirredução
7.
Hepatology ; 59(3): 858-69, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24002947

RESUMO

UNLABELLED: Hepatic inflammation is a key feature of progressive liver disease. Alterations of fatty acid (FA) metabolism and signaling may play an important role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and its progression to nonalcoholic steatohepatitis (NASH). Moreover, FAs activate peroxisome proliferator-activated receptor α (PPARα) as a key transcriptional regulator of hepatic FA metabolism and inflammation. Since adipose triglyceride lipase (ATGL/PNPLA2) is the key enzyme for intracellular hydrolysis of stored triglycerides and determines FA signaling through PPARα, we explored the role of ATGL in hepatic inflammation in mouse models of NASH and endotoxemia. Mice lacking ATGL or hormone-sensitive lipase (HSL) were challenged with a methionine-choline-deficient (MCD) diet as a nutritional model of NASH or lipopolysaccharide (LPS) as a model of acute hepatic inflammation. We further tested whether a PPARα agonist (fenofibrate) treatment improves the hepatic phenotype in MCD- or LPS-challenged ATGL-knockout (KO) mice. MCD-fed ATGL-KO mice, although partially protected from peripheral lipolysis, showed exacerbated hepatic steatosis and inflammation. Moreover, ATGL-KO mice challenged by LPS showed enhanced hepatic inflammation, increased mortality, and torpor, findings which were attributed to impaired PPARα DNA binding activity due to reduced FABP1 protein levels, resulting in impaired nuclear FA import. Notably, liganding PPARα through fenofibrate attenuated hepatic inflammation in both MCD-fed and LPS-treated ATGL-KO mice. In contrast, mice lacking HSL had a phenotype similar to the WT mice on MCD and LPS challenge. CONCLUSION: These findings unravel a novel protective role of ATGL against hepatic inflammation which could have important implications for metabolic and inflammatory liver diseases.


Assuntos
Endotoxemia/imunologia , Endotoxemia/metabolismo , Fígado Gorduroso/imunologia , Fígado Gorduroso/metabolismo , Lipase/metabolismo , Animais , Deficiência de Colina/metabolismo , Deficiência de Colina/patologia , Modelos Animais de Doenças , Feminino , Lipase/genética , Lipase/imunologia , Lipopolissacarídeos/toxicidade , Fígado/imunologia , Fígado/metabolismo , Masculino , Metionina/deficiência , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , PPAR alfa/imunologia , PPAR alfa/metabolismo , Transdução de Sinais/imunologia
8.
J Mater Sci Mater Med ; 25(3): 595-606, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24258399

RESUMO

Biomimetic nanocrystalline calcium-deficient apatite compounds are particularly attractive for the setup of bioactive bone-repair scaffolds due to their high similarity to bone mineral in terms of chemical composition, structural and substructural features. As such, along with the increasingly appealing development of moderate temperature engineered routes for sample processing, they have widened the armamentarium of orthopedic and maxillofacial surgeons in the field of bone tissue engineering. This was made possible by exploiting the exceptional surface reactivity of biomimetic apatite nanocrystals, capable of easily exchanging ions or adsorbing (bio)molecules, thus leading to highly-versatile drug delivery systems. In this contribution we focus on the preparation of hybrid materials combining biomimetic nanocrystalline apatites and enzymes (lysozyme and subtilisin). This paper reports physico-chemical data as well as cytotoxicity evaluations towards Cal-72 osteoblast-like cells and finally antimicrobial assessments towards selected strains of interest in bone surgery. Biomimetic apatite/enzyme hybrids could be prepared in varying buffers. They were found to be non-cytotoxic toward osteoblastic cells and the enzymes retained their biological activity (e.g. bond cleavage or antibacterial properties) despite the immobilization and drying processes. Release properties were also examined. Beyond these illustrative examples, the concept of biomimetic apatites functionalized with enzymes is thus shown to be useable in practice, e.g. for antimicrobial purposes, thus widening possible therapeutic perspectives.


Assuntos
Apatitas/química , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Materiais Biomiméticos/síntese química , Fosfatos de Cálcio/química , Muramidase/química , Osteogênese/fisiologia , Subtilisina/química , Substitutos Ósseos/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática , Estabilidade Enzimática , Humanos , Teste de Materiais , Conformação Molecular , Nanoestruturas , Osteogênese/efeitos dos fármacos , Tamanho da Partícula , Propriedades de Superfície
9.
Gut ; 63(9): 1401-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24259423

RESUMO

BACKGROUND: Idiopathic achalasia is a rare motor disorder of the oesophagus characterised by neuronal loss at the lower oesophageal sphincter. Achalasia is generally accepted as a multifactorial disorder with various genetic and environmental factors being risk-associated. Since genetic factors predisposing to achalasia have been poorly documented, we assessed whether single nucleotide polymorphisms (SNPs) in genes mediating immune response and neuronal function contribute to achalasia susceptibility. METHODS: 391 SNPs covering 190 immune and 67 neuronal genes were genotyped in an exploratory cohort from Central Europe (589 achalasia patients, 794 healthy volunteers (HVs)). 24 SNPs (p<0.05) were validated in an Italian (160 achalasia patients, 278 HVs) and Spanish cohort (281 achalasia patients, 296 HVs). 16 SNPs in linkage disequilibrium (LD) with rs1799724 (r(2)>0.2) were genotyped in the exploratory cohort. Genotype distributions of patients (1030) and HVs (1368) were compared using Cochran-Armitage trend test. RESULTS: The rs1799724 SNP located between the lymphotoxin-α (LTA) and tumour necrosis factor-α (TNFα) genes was significantly associated with achalasia and withstood correction for testing multiple SNPs (p=1.17E-4, OR=1.41 (1.18 to 1.67)). SNPs in high LD with rs1799724 were associated with achalasia. Three SNPs located in myosin-5B, adrenergic receptor-ß-2 and interleukin-13 (IL13) showed nominally significant association to achalasia that was strengthened by replication. CONCLUSIONS: Our study provides evidence for rs1799724 at the LTA/TNFα locus as a susceptibility factor for idiopathic achalasia. Additional studies are needed to dissect which genetic variants in the LTA/TNFα locus are disease-causing and confirm other variants as potential susceptibility factors for achalasia.


Assuntos
Acalasia Esofágica/genética , Predisposição Genética para Doença , Linfotoxina-alfa/genética , Polimorfismo de Nucleotídeo Único , Fator de Necrose Tumoral alfa/genética , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Marcadores Genéticos , Técnicas de Genotipagem , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...