Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 32(4): e2539, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35048473

RESUMO

Successional processes ultimately determine and define carbon accumulations in forested ecosystems. Although primary succession on wholly new substrate occurs across the globe, secondary succession, often following storm events or anthropogenic disturbance, is more common and is capable of globally significant accumulations of carbon (C) at a time when offsets to anthropogenic carbon dioxide (CO2 ) emissions are critically needed. In Hawai'i, prior studies have investigated ecosystem development during primary succession on lava flows, including estimates of C mass accumulation. Yet relatively little is known regarding secondary succession of Hawaii's native forests, particularly regarding C mass accumulation. Here we documented aboveground C mass accumulation by native- and nonnative-dominated second-growth forests following deforestation of mature native lowland rainforests in the Puna District of Hawai'i Island. We characterized species composition and stand structure of three distinct successional forest stand types: those dominated by the native tree, Metrosideros polymorpha ('Ohi'a), and those dominated by invasive nonnative trees, Falcataria moluccana (albizia) and Psidium cattleianum (strawberry guava). We compared M. polymorpha-dominated and F. moluccana-dominated second-growth forests to adjacent mature M. polymorpha-dominated forests as well as young M. polymorpha-dominated forests undergoing initial stages of primary succession on 36-years-old lava fields. Aboveground carbon density (ACD) values of mature primary forest stands (171 Mg/ha) were comparable to those of mature continental tropical forests. M. polymorpha-dominated second-growth stands attained nearly 50% of ACD values of mature primary forests after less than 30 years of post-disturbance succession and exhibited aboveground carbon accumulation rates of ~3 Mg C·ha-1 ·year-1 . Such rates were comparable to those of second-growth forests in continental tropics. Rates of ACD accumulation by second-growth forests dominated by nonnative F. moluccana stands were similar, or slightly greater than, those of M. polymorpha-dominated stands. However, M. polymorpha individuals were virtually absent from stands dominated by either P. cattleianum or F. moluccana. Taken together, results demonstrated that re-establishment and rapid accumulation of C mass by M. polymorpha stands during secondary succession is certainly possible, but only where populations of nonnative species have not already colonized areas during early stages of secondary succession.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Adulto , Florestas , Havaí , Humanos , Árvores
2.
Tree Physiol ; 20(10): 673-681, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-12651517

RESUMO

Transpiration, leaf characteristics and forest structure in Metrosideros polymorpha Gaud. stands growing in East Maui, Hawaii were investigated to assess physiological limitations associated with flooding as a mechanism of reduced canopy leaf area in waterlogged sites. Whole-tree sap flow, stomatal conductance, microclimate, soil oxidation-reduction potential, stand basal area and leaf area index (LAI) were measured on moderately sloped, drained sites with closed canopies (90%) and on level, waterlogged sites with open canopies (50-60%). The LAI was measured with a new technique based on enlarged photographs of individual tree crowns and allometric relationships. Sap flow was scaled to the stand level by multiplying basal area-normalized sap flow by stand basal area. Level sites had lower soil redox potentials, lower mean stand basal area, lower LAI, and a higher degree of soil avoidance by roots than sloped sites. Foliar nutrients and leaf mass per area (LMA) in M. polymorpha were similar between level and sloped sites. Stomatal conductance was similar for M. polymorpha saplings on both sites, but decreased with increasing tree height (r(2) = 0.72; P < 0.001). Stand transpiration estimates ranged from 79 to 89% of potential evapotranspiration (PET) for sloped sites and from 28 to 51% of PET for level sites. Stand transpiration estimates were strongly correlated with LAI (r(2) = 0.96; P < 0.001). Whole-tree transpiration was lower at level sites with waterlogged soils, but was similar or higher for trees on level sites when normalized by leaf area. Trees on level sites had a smaller leaf area per stem diameter than trees on sloped sites, suggesting that soil oxygen deficiency may reduce leaf area. However, transpiration per unit leaf area did not vary substantially, so leaf-level physiological behavior was conserved, regardless of differences in tree leaf area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...