Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Injury ; 55(2): 111254, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070329

RESUMO

Delayed functional recovery after injury is associated with significant personal and socioeconomic burden. Identification of patients at risk for a prolonged recovery after a musculoskeletal injury is thus of high relevance. The aim of the current study was to show the feasibility of using a machine learning assisted model to predict functional recovery based on the pre- and immediate post injury patient activity as measured with wearable systems in trauma patients. Patients with a pre-existing wearable (smartphone and/or body-worn sensor), data availability of at least 7 days prior to their injury, and any musculoskeletal injury of the upper or lower extremity were included in this study. Patient age, sex, injured extremity, time off work and step count as activity data were recorded continuously both pre- and post-injury. Descriptive statistics were performed and a logistic regression machine learning model was used to predict the patient's functional recovery status after 6 weeks based on their pre- and post-injury activity characteristics. Overall 38 patients (7 upper extremity, 24 lower extremity, 5 pelvis, 2 combined) were included in this proof-of-concept study. The average follow-up with available wearable data was 85.4 days. Based on the activity data, a predictive model was constructed to determine the likelihood of having a recovery of at least 50 % of the pre-injury activity state by post injury week 6. Based on the individual activity by week 3 a predictive accuracy of over 80 % was achieved on an independent test set (F1=0,82; AUC=0,86; ACC=8,83). The employed model is feasible to assess the principal risk for a slower recovery based on readily available personal wearable activity data. The model has the potential to identify patients requiring additional aftercare attention early during the treatment course, thus optimizing return to the pre-injury status through focused interventions. Additional patient data is needed to adapt the model to more specifically focus on different fracture entities and patient groups.


Assuntos
Fraturas Ósseas , Dispositivos Eletrônicos Vestíveis , Humanos , Estudos de Viabilidade , Aprendizado de Máquina
2.
Sci Rep ; 13(1): 6046, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055456

RESUMO

Due to the rapid advancements in recent years, medical image analysis is largely dominated by deep learning (DL). However, building powerful and robust DL models requires training with large multi-party datasets. While multiple stakeholders have provided publicly available datasets, the ways in which these data are labeled vary widely. For Instance, an institution might provide a dataset of chest radiographs containing labels denoting the presence of pneumonia, while another institution might have a focus on determining the presence of metastases in the lung. Training a single AI model utilizing all these data is not feasible with conventional federated learning (FL). This prompts us to propose an extension to the widespread FL process, namely flexible federated learning (FFL) for collaborative training on such data. Using 695,000 chest radiographs from five institutions from across the globe-each with differing labels-we demonstrate that having heterogeneously labeled datasets, FFL-based training leads to significant performance increase compared to conventional FL training, where only the uniformly annotated images are utilized. We believe that our proposed algorithm could accelerate the process of bringing collaborative training methods from research and simulation phase to the real-world applications in healthcare.


Assuntos
Algoritmos , Inteligência Artificial , Simulação por Computador , Instalações de Saúde , Tórax
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...