Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(28): 40758-40777, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38819507

RESUMO

The presence of CECs in aquatic systems has raised significant concern since they are potentially harmful to the environment and human health. Eliminating CECs has led to the development of alternatives to treat wastewater, such as advanced oxidation processes (AOPs). The ultraviolet-mediated activation of monochloramine (UV/NH2Cl) is a novel and relatively unexplored AOPs for treating pollutants in wastewater systems. This process involves the production of amino radicals (•NH2) and chlorine radicals (Cl•) from the UV irradiation of NH2Cl. Studies have demonstrated its effectiveness in mitigating various CECs, exhibiting advantages, such as the potential to control the amount of toxic disinfection byproducts (TDBPs) formed, low costs of reagents, and low energy consumption. However, the strong influence of operating parameters in the degradation efficiency and existence of NH2Cl, the lack of studies of its use in real matrices and techno-economic assessments, low selectivity, and prolonged treatment periods must be overcome to make this technology more competitive with more mature AOPs. This review article revisits the state-of-the-art of the UV/NH2Cl technology to eliminate pharmaceutical and personal care products (PPCPs), micropollutants from the food industry, pesticides, and industrial products in aqueous media. The reactions involved in the production of radicals and the influence of operating parameters are covered to understand the formation of TDBPs and the main challenges and limitations of the UV/NH2Cl to degrade CECs. This review article generates critical knowledge about the UV/NH2Cl process, expanding the horizon for a better application of this technology in treating water contaminated with CECs.


Assuntos
Cloraminas , Raios Ultravioleta , Poluentes Químicos da Água , Cloraminas/química , Poluentes Químicos da Água/química , Desinfecção/métodos , Águas Residuárias/química , Purificação da Água/métodos , Oxirredução
2.
Chemosphere ; 341: 139988, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37669720

RESUMO

The performance of a pilot-scale boron-doped diamond (BDD) reactor through a numerical analysis of reaction rate parameters and enhanced mass transfer has been investigated. The main objective of this research is to evaluate the efficiency of the reactor in mineralizing and degrading caffeine as an emerging contaminant. Based on the kinetic mechanisms and mass transport correlations reported in the literature, two reaction rate kinetic models for caffeine degradation are proposed and analyzed. The models consider different electrolytes (NaCl and Na2SO4) and applied current densities. The kinetic fitting process utilizes the gradient-maximal electrochemical approach, together with orthogonal placement methods, fourth-order Runge-Kutta (RK4) methods, and Nelder & Mead methods for optimization of kinetic parameters and spatial discretization of the material balance. Experimental data obtained from a factorial design with four factors and two levels (24) validate the proposed kinetic models. Caffeine degradation is achieved with NaCl and Na2SO4 electrolytes at concentrations of 60 ppm and 100 ppm, respectively. The corresponding applied loads are 1.5 AhL-1 and 3 AhL-1. Na2SO4 exhibits superior performance with a total organic carbon (TOC) removal efficiency of 99.13%, while NaCl achieves 31.47% mineralization. The behavior of caffeine degradation under the operational and scale conditions demonstrates that NaCl, as a support electrolyte, enables controlled charge transfer (current density) during the degradation process. In contrast, Na2SO4 as a support electrolyte introduces a mixed control of charge and mass transfer. The pilot-scale kinetic parameters obtained in this study provide valuable insights into the support electrolyte dynamics and current density dynamics in BDD-based Electrooxidation (EO) systems, particularly in complex matrix applications. Furthermore, the observed electrical consumption supports the potential application of EO as a viable technology for industrial-scale tertiary wastewater treatment, specifically for caffeine removal.


Assuntos
Cafeína , Cloreto de Sódio , Eletricidade , Indústrias , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...