Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38927659

RESUMO

Pathogenic variations in the BRCA2 gene have been detected with the development of next-generation sequencing (NGS)-based hereditary cancer panel testing technology. It also reveals an increasing number of variants of uncertain significance (VUSs). Well-established functional tests are crucial to accurately reclassifying VUSs for effective diagnosis and treatment. We retrospectively analyzed the multi-gene cancer panel results of 922 individuals and performed in silico analysis following ClinVar classification. Then, we selected five breast cancer-diagnosed patients' missense BRCA2 VUSs (T1011R, T1104P/M1168K, R2027K, G2044A, and D2819) for reclassification. The effects of VUSs on BRCA2 function were analyzed using comet and H2AX phosphorylation (γH2AX) assays before and after the treatment of peripheral blood mononuclear cells (PBMCs) of subjects with the double-strand break (DSB) agent doxorubicin (Dox). Before and after Dox-induction, the amount of DNA in the comet tails was similar in VUS carriers; however, notable variations in γH2AX were observed, and according to combined computational and functional analyses, we reclassified T1001R as VUS-intermediate, T1104P/M1168K and D2819V as VUS (+), and R2027K and G2044A as likely benign. These findings highlight the importance of the variability of VUSs in response to DNA damage before and after Dox-induction and suggest that further investigation is needed to understand the underlying mechanisms.


Assuntos
Proteína BRCA2 , Neoplasias da Mama , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Fosforilação , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteína BRCA2/genética , Ensaio Cometa/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Estudos Retrospectivos , Mutação de Sentido Incorreto , Quebras de DNA de Cadeia Dupla , Dano ao DNA
2.
PLoS One ; 17(6): e0268391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657956

RESUMO

Synthetic lethality in DNA repair pathways is an important strategy for the selective treatment of cancer cells without harming healthy cells and developing cancer-specific drugs. The synthetic lethal interaction between the mismatch repair (MMR) protein, MutL homolog 1 (MLH1), and the mitochondrial base excision repair protein, DNA polymerase γ (Pol γ) was used in this study for the selective treatment of MLH1 deficient cancers. Germline mutations in the MLH1 gene and aberrant MLH1 promoter methylation result in an increased risk of developing many cancers, including nonpolyposis colorectal and endometrial cancers. Because the inhibition of Pol γ in MLH1 deficient cancer cells provides the synthetic lethal selectivity, we conducted a comprehensive small molecule screening from various databases and chemical drug library molecules for novel Pol γ inhibitors that selectively kill MLH1 deficient cancer cells. We characterized these Pol γ inhibitor molecules in vitro and in vivo, and identified 3,3'-[(1,1'-Biphenyl)-4',4'-diyl)bis(azo)]bis[4-amino-1-naphthalenesulfonic acid] (congo red; CR; Zinc 03830554) as a high-affinity binder to the Pol γ protein and potent inhibitor of the Pol γ strand displacement and one-nucleotide incorporation DNA synthesis activities in vitro and in vivo. CR reduced the cell proliferation of MLH1 deficient HCT116 human colon cancer cells and suppressed HCT116 xenograft tumor growth whereas it did not affect the MLH1 proficient cell proliferation and xenograft tumor growth. CR caused mitochondrial dysfunction and cell death by inhibiting Pol γ activity and oxidative mtDNA damage repair, increasing the production of reactive oxygen species and oxidative mtDNA damage in MLH1 deficient cells. This study suggests that the Pol γ inhibitor, CR may be further evaluated for the MLH1 deficient cancers' therapy.


Assuntos
Antineoplásicos , Neoplasias do Colo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Metilação de DNA , Reparo de Erro de Pareamento de DNA , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , DNA Mitocondrial/metabolismo , Feminino , Humanos , Mitocôndrias/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
3.
PLoS One ; 17(2): e0264337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35202418

RESUMO

Vitamin D deficiency is common among postmenopausal women. Telomere length can be a potential protective mechanism for age-related diseases. The objective of our study is to examine the association of vitamin D supplementation on leukocyte telomere length (LTL) in healthy postmenopausal women with vitamin D deficiency. The study was designed as a placebo-controlled study to investigate the short-term effects of vitamin D supplementation and seasonal changes on vitamin D related parameters, including 25(OH)D, 1,25(OH)2D parathormone (PTH), Vitamin D binding protein (VDBP), vitamin D receptor (VDR), and telomere length in a cohort of postmenopausal women (n = 102). The group was divided as supplementation (n = 52) and placebo groups (n = 50). All parameters were measured before and after treatment. Serum VDBP levels were measured by ELISA method and VDR, GC (VDBP) gene expressions and relative telomere lengths were measured in peripheral blood mononuclear cells (PBMC) using a quantitative real-time PCR method. The results demonstrate that baseline levels were similar between the groups. After vitamin D supplementation 25(OH)D, 1,25(OH)2D, PTH and VDBP levels were changed significantly compared to the placebo group. At the end of the study period, LTL levels were significantly increased in both groups and this change was more prominent in placebo group. The change in GC expression was significant between treatment and placebo groups but VDR expression remained unchanged. Even though the study was designed to solely assess the effects of vitamin D supplementation, LTL was significantly increased in the whole study group in summer months suggesting that LTL levels are affected by sun exposure and seasonal changes rather than supplementation. The study displayed the short-term effect of Vitamin D supplementation on vitamin D, PTH levels, LTL and vitamin D associated gene expressions. The relation between Vitamin D and LTL is not linear and could be confounded by several factors such as the population differences, regional and seasonal changes in sun exposure.


Assuntos
Leucócitos Mononucleares/efeitos dos fármacos , Homeostase do Telômero/efeitos dos fármacos , Telômero/efeitos dos fármacos , Deficiência de Vitamina D/tratamento farmacológico , Vitamina D/farmacologia , Idoso , Estudos de Coortes , Feminino , Humanos , Leucócitos Mononucleares/ultraestrutura , Pessoa de Meia-Idade , Pós-Menopausa , Receptores de Calcitriol/sangue , Transcriptoma , Vitamina D/administração & dosagem , Vitamina D/sangue , Deficiência de Vitamina D/patologia
4.
Pediatr Allergy Immunol ; 32(2): 349-357, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33012025

RESUMO

BACKGROUND: Heterozygous relatives of ataxia-telangiectasia (AT) patients are at an increased risk for certain AT-related manifestations. We also show that there is an increase of infection frequency in parents of AT patients. Thus, we hypothesized that the parents might exhibit immune alterations similar to their affected children. METHODS: Lymphocyte phenotyping to enumerate T- and B-cell subsets was performed. Functional analyses included in vitro quantified γ-H2AX, poly (ADP-ribose) polymerase (PARP) and caspase-9 proteins. Chromosomal instability was determined by comet assay. RESULTS: We analyzed 20 AT patients (14F/6M), 31 parents (16F/15M), and 35 age-matched healthy controls. The AT patients' parents exhibited low frequency of naive CD4+ T- (n = 14, 45%) and recent thymic emigrants (n = 11, 35%) in comparison with the age-matched healthy donors. Interestingly, parents with low naive T cells also demonstrated high rate of recurrent infections (9/14, 64%). In comparison with age-matched controls, parents who had recurrent infections and low naive T cells showed significantly higher baseline γ-H2AX levels and H2 O2 -induced DNA damage as well as increased cleaved caspase-9 and PARP proteins. CONCLUSION: Parents of AT patients could present with recurrent infections and display cellular defects that mimic AT patients. The observed immunological changes could be associated with increased DNA double-strand breaks.


Assuntos
Ataxia Telangiectasia , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Pais , Fenótipo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
5.
Sci Rep ; 10(1): 16371, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004944

RESUMO

The molecular mechanisms underlying the development and progression of bladder cancer (BC) are complex and have not been fully elucidated. Alterations in base excision repair (BER) capacity, one of several DNA repair mechanisms assigned to preserving genome integrity, have been reported to influence cancer susceptibility, recurrence, and progression, as well as responses to chemotherapy and radiotherapy. We report herein that non-muscle invasive BC (NMIBC) tissues exhibit increased uracil incision, abasic endonuclease and gap-filling activities, as well as total BER capacity in comparison to normal bladder tissue from the same patient (p < 0.05). No significant difference was detected in 8-oxoG incision activity between cancer and normal tissues. NMIBC tissues have elevated protein levels of uracil DNA glycosylase, 8-oxoguanine DNA glycosylase, AP endonuclease 1 and DNA polymerase ß protein. Moreover, the fold increase in total BER and the individual BER enzyme activities were greater in high-grade tissues than in low-grade NMIBC tissues. These findings suggest that enhanced BER activity may play a role in the etiology of NMIBC and that BER proteins could serve as biomarkers in disease prognosis, progression or response to genotoxic therapeutics, such as Bacillus Calmette-Guérin.


Assuntos
Carcinoma de Células de Transição/genética , Reparo do DNA , Neoplasias da Bexiga Urinária/genética , Bexiga Urinária/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células de Transição/patologia , DNA Glicosilases/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias da Bexiga Urinária/patologia
6.
PLoS One ; 14(8): e0221362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31415677

RESUMO

Base excision repair (BER) defects and concomitant oxidative DNA damage accumulation play a role in the etiology and progression of late-onset Alzheimer's disease (LOAD). However, it is not known whether genetic variant(s) of specific BER genes contribute to reduced BER activity in LOAD patients and whether they are associated with risk, development and/or progression of LOAD. Therefore, we performed targeted next generation sequencing for three BER genes, uracil glycosylase (UNG), endonuclease VIII-like DNA glycosylase 1 (NEIL1) and polymerase ß (POLß) including promoter, exonic and intronic regions in peripheral blood samples and postmortem brain tissues (temporal cortex, TC and cerebellum, CE) from LOAD patients, high-pathology control and cognitively normal age-matched controls. In addition, the known LOAD risk factor, APOE was included in this study to test whether any BER gene variants associate with APOE variants, particularly APOE ε4. We show that UNG carry five significant variants (rs1610925, rs2268406, rs80001089, rs1018782 and rs1018783) in blood samples of Turkish LOAD patients compared to age-matched controls and one of them (UNG rs80001089) is also significant in TC from Brazilian LOAD patients (p<0.05). The significant variants present only in CE and TC from LOAD are UNG rs2569987 and POLß rs1012381950, respectively. There is also significant epistatic relationship (p = 0.0410) between UNG rs80001089 and NEIL1 rs7182283 in TC from LOAD subjects. Our results suggest that significant BER gene variants may be associated with the risk of LOAD in non-APOE ε4 carriers. On the other hand, there are no significant UNG, NEIL1 and POLß variants that could affect their protein level and function, suggesting that there may be other factors such as post-transcriptional or-translational modifications responsible for the reduced activities and protein levels of these genes in LOAD pathogenesis. Further studies with increased sample size are needed to confirm the relationship between BER variants and LOAD risk.


Assuntos
Doença de Alzheimer/genética , Apolipoproteínas E/metabolismo , Encéfalo , DNA Glicosilases/genética , DNA Polimerase beta/genética , Reparo do DNA , Polimorfismo Genético , Uracila-DNA Glicosidase/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Apolipoproteínas E/genética , DNA Glicosilases/metabolismo , DNA Polimerase beta/metabolismo , Feminino , Humanos , Masculino , Fatores de Risco , Uracila-DNA Glicosidase/metabolismo
7.
J Allergy Clin Immunol ; 142(1): 246-257, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29155101

RESUMO

BACKGROUND: Pathological inflammatory syndromes of unknown etiology are commonly observed in ataxia telangiectasia (AT) and Artemis deficiency. Similar inflammatory manifestations also exist in patients with STING-associated vasculopathy in infancy (SAVI). OBJECTIVE: We sought to test the hypothesis that the inflammation-associated manifestations observed in patients with AT and Artemis deficiency stem from increased type I IFN signature leading to neutrophil-mediated pathological damage. METHODS: Cytokine/protein signatures were determined by ELISA, cytometric bead array, or quantitative PCR. Stat1 phosphorylation levels were determined by flow cytometry. DNA species accumulating in the cytosol of patients' cells were quantified microscopically and flow cytometrically. Propensity of isolated polymorhonuclear granulocytes to form neutrophil extracellular traps (NETs) was determined using fluorescence microscopy and picogreen assay. Neutrophil reactive oxygen species levels and mitochondrial stress were assayed using fluorogenic probes, microscopy, and flow cytometry. RESULTS: Type I and III IFN signatures were elevated in plasma and peripheral blood cells of patients with AT, Artemis deficiency, and SAVI. Chronic IFN production stemmed from the accumulation of DNA in the cytoplasm of AT and Artemis-deficient cells. Neutrophils isolated from patients spontaneously produced NETs and displayed indicators of oxidative and mitochondrial stress, supportive of their NETotic tendencies. A similar phenomenon was also observed in neutrophils from healthy controls exposed to patient plasma samples or exogeneous IFN-α. CONCLUSIONS: Type I IFN-mediated neutrophil activation and NET formation may contribute to inflammatory manifestations observed in patients with AT, Artemis deficiency, and SAVI. Thus, neutrophils represent a promising target to manage inflammatory syndromes in diseases with active type I IFN signature.


Assuntos
Ataxia Telangiectasia/imunologia , Armadilhas Extracelulares/imunologia , Síndromes de Imunodeficiência/imunologia , Interferon Tipo I/imunologia , Ataxia Telangiectasia/patologia , Proteínas de Ligação a DNA , Endonucleases/deficiência , Endonucleases/imunologia , Humanos , Síndromes de Imunodeficiência/genética , Proteínas de Membrana/genética , Ativação de Neutrófilo , Neutrófilos/imunologia , Neutrófilos/patologia , Proteínas Nucleares/deficiência , Proteínas Nucleares/imunologia , Vasculite/genética , Vasculite/imunologia , Vasculite/patologia
8.
Mitochondrion ; 17: 164-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24704805

RESUMO

The mitochondrial DNA (mtDNA) encodes for only 13 polypeptides, components of 4 of the 5 oxidative phosphorylation complexes. But despite this apparently small numeric contribution, all 13 subunits are essential for the proper functioning of the oxidative phosphorylation circuit. Thus, accumulation of lesions, mutations and deletions/insertions in the mtDNA could have severe functional consequences, including mitochondrial diseases, aging and age-related diseases. The DNA is a chemically unstable molecule, which can be easily oxidized, alkylated, deaminated and suffer other types of chemical modifications, throughout evolution the organisms that survived were those who developed efficient DNA repair processes. In the last two decades, it has become clear that mitochondria have DNA repair pathways, which operate, at least for some types of lesions, as efficiently as the nuclear DNA repair pathways. The mtDNA is localized in a particularly oxidizing environment, making it prone to accumulate oxidatively generated DNA modifications (ODMs). In this article, we: i) review the major types of ODMs formed in mtDNA and the known repair pathways that remove them; ii) discuss the possible involvement of other repair pathways, just recently characterized in mitochondria, in the repair of these modifications; and iii) address the role of DNA repair in mitochondrial function and a possible cross-talk with other pathways that may potentially participate in mitochondrial genomic stability, such as mitochondrial dynamics and nuclear-mitochondrial signaling. Oxidative stress and ODMs have been increasingly implicated in disease and aging, and thus we discuss how variations in DNA repair efficiency may contribute to the etiology of such conditions or even modulate their clinical outcomes.


Assuntos
Dano ao DNA/efeitos dos fármacos , Reparo do DNA , DNA Mitocondrial/efeitos dos fármacos , Mitocôndrias/fisiologia , Oxidantes/toxicidade , Humanos , Mitocôndrias/efeitos dos fármacos
9.
Mech Ageing Dev ; 135: 1-14, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24406253

RESUMO

Cockayne Syndrome is a segmental premature aging syndrome, which can be caused by loss of function of the CSB protein. CSB is essential for genome maintenance and has numerous interaction partners with established roles in different DNA repair pathways including transcription coupled nucleotide excision repair and base excision repair. Here, we describe a new interaction partner for CSB, the DNA glycosylase NEIL2. Using both cell extracts and recombinant proteins, CSB and NEIL2 were found to physically interact independently of DNA. We further found that CSB is able to stimulate NEIL2 glycosylase activity on a 5-hydroxyl uracil lesion in a DNA bubble structure substrate in vitro. A novel 4,6-diamino-5-formamidopyrimidine (FapyA) specific incision activity of NEIL2 was also stimulated by CSB. To further elucidate the biological role of the interaction, immunofluorescence studies were performed, showing an increase in cytoplasmic CSB and NEIL2 co-localization after oxidative stress. Additionally, stalling of the progression of the transcription bubble with α-amanitin resulted in increased co-localization of CSB and NEIL2. Finally, CSB knockdown resulted in reduced incision of 8-hydroxyguanine in a DNA bubble structure using whole cell extracts. Taken together, our data supports a biological role for CSB and NEIL2 in transcription associated base excision repair.


Assuntos
DNA Glicosilases/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação Enzimológica da Expressão Gênica , Citoplasma/metabolismo , DNA/química , Reparo do DNA , Escherichia coli/metabolismo , Guanina/análogos & derivados , Guanina/química , Células HeLa , Humanos , Microscopia de Fluorescência , Estresse Oxidativo , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Recombinantes/metabolismo , Transcrição Gênica , Vitamina K 3/química
10.
Mech Ageing Dev ; 134(5-6): 212-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23583689

RESUMO

Cockayne syndrome (CS) is characterized by progressive multisystem degeneration and is classified as a segmental premature aging syndrome. The majority of CS cases are caused by defects in the CS complementation group B (CSB) protein and the rest are mainly caused by defects in the CS complementation group A (CSA) protein. Cells from CS patients are sensitive to UV light and a number of other DNA damaging agents including various types of oxidative stress. The cells also display transcription deficiencies, abnormal apoptotic response to DNA damage, and DNA repair deficiencies. Herein we have critically reviewed the current knowledge about known protein interactions of the CS proteins. The review focuses on the participation of the CSB and CSA proteins in many different protein interactions and complexes, and how these interactions inform us about pathways that are defective in the disease.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Genoma Humano , Fatores de Transcrição/metabolismo , Transcriptoma , Animais , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , Fatores de Transcrição/genética
11.
FASEB J ; 24(7): 2334-46, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20181933

RESUMO

Cockayne syndrome (CS) is a human premature aging disorder associated with severe developmental deficiencies and neurodegeneration, and phenotypically it resembles some mitochondrial DNA (mtDNA) diseases. Most patients belong to complementation group B, and the CS group B (CSB) protein plays a role in genomic maintenance and transcriptome regulation. By immunocytochemistry, mitochondrial fractionation, and Western blotting, we demonstrate that CSB localizes to mitochondria in different types of cells, with increased mitochondrial distribution following menadione-induced oxidative stress. Moreover, our results suggest that CSB plays a significant role in mitochondrial base excision repair (BER) regulation. In particular, we find reduced 8-oxo-guanine, uracil, and 5-hydroxy-uracil BER incision activities in CSB-deficient cells compared to wild-type cells. This deficiency correlates with deficient association of the BER activities with the mitochondrial inner membrane, suggesting that CSB may participate in the anchoring of the DNA repair complex. Increased mutation frequency in mtDNA of CSB-deficient cells demonstrates functional significance of the presence of CSB in the mitochondria. The results in total suggest that CSB plays a direct role in mitochondrial BER by helping recruit, stabilize, and/or retain BER proteins in repair complexes associated with the inner mitochondrial membrane, perhaps providing a novel basis for understanding the complex phenotype of this debilitating disorder.


Assuntos
DNA Helicases/fisiologia , Enzimas Reparadoras do DNA/fisiologia , Reparo do DNA , DNA Mitocondrial , Membranas Mitocondriais/fisiologia , Linhagem Celular , DNA Helicases/análise , DNA Helicases/deficiência , Enzimas Reparadoras do DNA/análise , Enzimas Reparadoras do DNA/deficiência , Guanina/análogos & derivados , Guanina/análise , Humanos , Membranas Mitocondriais/química , Estresse Oxidativo , Proteínas de Ligação a Poli-ADP-Ribose , Uracila/análogos & derivados , Uracila/análise
12.
Mol Cell Biol ; 29(16): 4441-54, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19506022

RESUMO

Oxidized bases are common types of DNA modifications. Their accumulation in the genome is linked to aging and degenerative diseases. These modifications are commonly repaired by the base excision repair (BER) pathway. Oxoguanine DNA glycosylase (OGG1) initiates BER of oxidized purine bases. A small number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic activities and RAD52 stimulates OGG1 incision activity, likely increasing its turnover rate. RAD52 colocalizes with OGG1 after oxidative stress to cultured cells, but not after the direct induction of double-strand breaks by ionizing radiation. Human cells depleted of RAD52 via small interfering RNA knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1 to repair oxidative DNA damage and enhances the cellular resistance to oxidative stress. Our observations suggest a coordinated action between these proteins that may be relevant when oxidative lesions positioned close to strand breaks impose a hindrance to RAD52 catalytic activities.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , Estresse Oxidativo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Linhagem Celular , Dano ao DNA , DNA Glicosilases/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Humanos , Camundongos , Camundongos Knockout , Oxirredução , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética
13.
J Biol Chem ; 284(14): 9270-9, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19179336

RESUMO

Cockayne syndrome (CS) is a premature aging condition characterized by sensitivity to UV radiation. However, this phenotype does not explain the progressive neurodegeneration in CS patients. It could be due to the hypersensitivity of CSB-deficient cells to oxidative stress. So far most studies on the role of CSB in repair of oxidatively induced DNA lesions have focused on 7,8-dihydro-8-oxoguanine. This study examines the role of CSB in the repair of formamidopyrimidines 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) and 4,6-diamino-5-formamidopyrimidine (FapyAde), which are substrates for endonuclease VIII-like (NEIL1) DNA glycosylase. Results presented here show that csb(-/-) mice have a higher level of endogenous FapyAde and FapyGua in DNA from brain and kidney than wild type mice as well as higher levels of endogenous FapyAde in genomic DNA and mtDNA from liver. In addition, CSB stimulates NEIL1 incision activity in vitro, and CSB and NEIL1 co-immunoprecipitate and co-localize in HeLa cells. When CSB and NEIL1 are depleted from HeLa cells by short hairpin RNA knockdown, repair of induced FapyGua is strongly inhibited. These results suggest that CSB plays a role in repair of formamidopyrimidines, possibly by interacting with and stimulating NEIL1, and that accumulation of such modifications may have a causal role in the pathogenesis of CS.


Assuntos
DNA Glicosilases/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/genética , DNA/genética , DNA/metabolismo , Pirimidinas/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , DNA Glicosilases/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Especificidade por Substrato
14.
Biochemistry ; 47(39): 10247-54, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18771289

RESUMO

Werner syndrome (WS) is a rare autosomal recessive disorder in humans characterized by premature aging and genetic instability. WS is caused by mutations in the WRN gene, which encodes a member of the RecQ family of DNA helicases. Cellular and biochemical studies suggest that WRN plays roles in DNA replication, DNA repair, telomere maintenance, and homologous recombination and that WRN has multiple enzymatic activities including 3' to 5' exonuclease, 3' to 5' helicase, and ssDNA annealing. The goal of this study was to map and further characterize the ssDNA annealing activity of WRN. Enzymatic studies using truncated forms of WRN identified a C-terminal 79 amino acid region between the RQC and the HRDC domains (aa1072-1150) that is required for ssDNA annealing activity. Deletion of the region reduced or eliminated ssDNA annealing activity of the WRN protein. Furthermore, the activity appears to correlate with DNA binding and oligomerization status of the protein.


Assuntos
DNA de Cadeia Simples/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , RecQ Helicases/química , RecQ Helicases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , DNA de Cadeia Simples/química , Exodesoxirribonucleases/genética , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Reação em Cadeia da Polimerase , RecQ Helicases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Síndrome de Werner , Helicase da Síndrome de Werner
15.
Hum Genet ; 124(4): 369-77, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18810497

RESUMO

Werner syndrome (WS) is an adult onset segmental progeroid syndrome caused by mutations in the WRN gene. The WRN gene encodes a 180 kDa nuclear protein that possesses helicase and exonuclease activities. The absence of WRN protein leads to abnormalities in various DNA metabolic pathways such as DNA repair, replication and telomere maintenance. Individuals with WS generally develop normally until the third decade of life, when premature aging phenotypes and a series of age-related disorders begin to manifest. In Japan, where a founder effect has been described, the frequency of Werner heterozygotes appears to be as high as 1/180 in the general population. Due to the relatively non-specific nature of the symptoms and the lack of awareness of the condition, this disease may be under-diagnosed in other parts of the world. Genetic counseling of WS patients follows the path of other autosomal recessive disorders, with special attention needed for cancer surveillance in relatives. Molecular diagnosis of WS is made by nucleotide sequencing and, in some cases, protein analysis. It is also of potential interest to measure WRN activities in WS patients. More than 50 different disease-causing mutations in the WRN gene have been identified in WS patients from all over the world. All but one of these cases has mutations that result in the premature termination of the protein. Here we describe the clinical, molecular and biochemical characteristics of WS for use by medical professionals in a health care setting. Additional information is available through the International Registry of WS (http://www.wernersyndrome.org).


Assuntos
Exodesoxirribonucleases/genética , RecQ Helicases/genética , Síndrome de Werner/diagnóstico , Síndrome de Werner/genética , Humanos , Mutação , Polimorfismo Genético , Síndrome de Werner/epidemiologia , Helicase da Síndrome de Werner
16.
Mol Biol Cell ; 19(9): 3923-33, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18596239

RESUMO

Werner syndrome (WS) is a human genetic disorder characterized by extensive clinical features of premature aging. Ataxia-telengiectasia (A-T) is a multisystem human genomic instability syndrome that includes premature aging in some of the patients. WRN and ATM, the proteins defective in WS and A-T, respectively, play significant roles in the maintenance of genomic stability and are involved in several DNA metabolic pathways. A role for WRN in DNA repair has been proposed; however, this study provides evidence that WRN is also involved in ATM pathway activation and in a S-phase checkpoint in cells exposed to DNA interstrand cross-link-induced double-strand breaks. Depletion of WRN in such cells by RNA interference results in an intra-S checkpoint defect, and interferes with activation of ATM as well as downstream phosphorylation of ATM target proteins. Treatment of cells under replication stress with the ATM kinase inhibitor KU 55933 results in a S-phase checkpoint defect similar to that observed in WRN shRNA cells. Moreover, gamma H2AX levels are higher in WRN shRNA cells than in control cells 6 and 16 h after exposure to psoralen DNA cross-links. These results suggest that WRN and ATM participate in a replication checkpoint response, in which WRN facilitates ATM activation in cells with psoralen DNA cross-link-induced collapsed replication forks.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/fisiologia , Morfolinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Pironas/farmacologia , RecQ Helicases/metabolismo , RecQ Helicases/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/farmacologia , DNA/química , DNA/metabolismo , Dano ao DNA , Inibidores Enzimáticos/farmacologia , Ficusina/farmacologia , Humanos , Microscopia de Fluorescência , Interferência de RNA , Fase S , Fatores de Tempo , Helicase da Síndrome de Werner
17.
Mech Ageing Dev ; 129(7-8): 441-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18541289

RESUMO

Cockayne Syndrome (CS) is a rare human genetic disorder characterized by progressive multisystem degeneration and segmental premature aging. The CS complementation group B (CSB) protein is engaged in transcription coupled and global nucleotide excision repair, base excision repair and general transcription. However, the precise molecular function of the CSB protein is still unclear. In the current review we discuss the involvement of CSB in some of these processes, with focus on the role of CSB in repair of oxidative damage, as deficiencies in the repair of these lesions may be an important aspect of the premature aging phenotype of CS.


Assuntos
Envelhecimento/genética , DNA Helicases/fisiologia , Enzimas Reparadoras do DNA/fisiologia , Reparo do DNA , Senilidade Prematura , Cromatina/química , Síndrome de Cockayne/genética , Dano ao DNA , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Humanos , Proteínas de Ligação a Poli-ADP-Ribose
18.
PLoS One ; 3(4): e1918, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18398454

RESUMO

BACKGROUND: The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have investigated the p300 acetylation mediated changes on the function of WRN in base excision DNA repair (BER). We show that acetylation of WRN increases in cells treated with methyl methanesulfonate (MMS), suggesting that acetylation of WRN may play a role in response to DNA damage. This hypothesis is consistent with our findings that acetylation of WRN stimulates its catalytic activities in vitro and in vivo, and that acetylated WRN enhances pol beta-mediated strand displacement DNA synthesis more than unacetylated WRN. Furthermore, we show that cellular exposure to the histone deacetylase inhibitor sodium butyrate stimulates long patch BER in wild type cells but not in WRN depleted cells, suggesting that acetylated WRN participates significantly in this process. CONCLUSION/SIGNIFICANCE: Collectively, these results provide the first evidence for a specific role of p300 mediated WRN acetylation in regulating its function during BER.


Assuntos
Reparo do DNA , DNA/química , Exodesoxirribonucleases/química , RecQ Helicases/química , Envelhecimento , Catálise , Linhagem Celular , Dano ao DNA , Exodesoxirribonucleases/metabolismo , Exonucleases/metabolismo , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , RecQ Helicases/metabolismo , Proteínas Recombinantes/química , Transcrição Gênica , Helicase da Síndrome de Werner
19.
Exp Gerontol ; 42(9): 871-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17587522

RESUMO

Werner syndrome (WS) is an excellent model system for the study of human aging. WRN, a nuclear protein mutated in WS, plays multiple roles in DNA metabolism. Our understanding about the metabolic regulation and function of this RecQ helicase has advanced greatly during the past decade, largely due to the availability of purified WRN protein, WRN knockdown cells, and WRN knockout mice. Recent biochemical and genetic studies indicate that WRN plays significant roles in DNA replication, DNA repair, and telomere maintenance. Interestingly, many WRN functions require handling of DNA ends during S-phase, and evidence suggests that WRN plays both upstream and downstream roles in the response to DNA damage. Future research should focus on the mechanism(s) of WRN in the regulation of the various DNA metabolism pathways and development of therapeutic approaches to treat premature aging syndromes such as WS.


Assuntos
Senescência Celular/genética , Mutação , RecQ Helicases/genética , Síndrome de Werner/genética , Animais , Dano ao DNA , Replicação do DNA , Exodesoxirribonucleases , Humanos , Laminina/genética , Camundongos , Modelos Biológicos , RecQ Helicases/fisiologia , Fase S , Telômero/ultraestrutura , Síndrome de Werner/metabolismo , Helicase da Síndrome de Werner
20.
Nucleic Acids Res ; 35(12): 4103-13, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17567611

RESUMO

The Cockayne syndrome B (CSB) protein--defective in a majority of patients suffering from the rare autosomal disorder CS--is a member of the SWI2/SNF2 family with roles in DNA repair and transcription. We demonstrate herein that purified recombinant CSB and the major human apurinic/apyrimidinic (AP) endonuclease, APE1, physically and functionally interact. CSB stimulates the AP site incision activity of APE1 on normal (i.e. fully paired) and bubble AP-DNA substrates, with the latter being more pronounced (up to 6-fold). This activation is ATP-independent, and specific for the human CSB and full-length APE1 protein, as no CSB-dependent stimulation was observed with Escherichia coli endonuclease IV or an N-terminal truncated APE1 fragment. CSB and APE1 were also found in a common protein complex in human cell extracts, and recombinant CSB, when added back to CSB-deficient whole cell extracts, resulted in increased total AP site incision capacity. Moreover, human fibroblasts defective in CSB were found to be hypersensitive to both methyl methanesulfonate (MMS) and 5-hydroxymethyl-2'-deoxyuridine, agents that introduce base excision repair (BER) DNA substrates/intermediates.


Assuntos
DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Linhagem Celular Transformada , DNA Helicases/fisiologia , Enzimas Reparadoras do DNA/fisiologia , Genoma Humano , Humanos , Metanossulfonato de Metila/toxicidade , Proteínas de Ligação a Poli-ADP-Ribose , Timidina/análogos & derivados , Timidina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...