Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 10(1): 1929725, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34104545

RESUMO

Breast cancer subtypes have not shown significant response to current immunomodulatory therapies. Although most subtypes are treatable, triple negative breast cancer (TNBC), an aggressive highly metastatic cancer, comprising 10-20% of breast cancers, remains an unmet medical need. New strategies are needed in order to overcome flaws in the responsiveness to current TNBC therapies. Our aims were: first, to determine the efficacy of a novel immunomodulatory peptide, C24D, on TNBC and second, to elucidate the molecular mechanism by which C24D induces immune-modulating tumor killing. Using mass spectrometry analysis, we identified CD45 as the C24D binding receptor. In vitro and in vivo TNBC models were used to assess the efficacy of C24D in reversing TNBC-induced immunosuppression and in triggering immune-modulated tumor cell killing. The CD45 signal transduction pathway was evaluated by western blot and FACS analyses. We revealed that addition of PBMCs from healthy female donors to TNBC cells results in a cascade of suppressive CD45 intracellular signals. On binding to CD45's extra-cellular domain on TNBC-suppressed leukocytes, the C24D peptide re-activates the Src family of tyrosine kinases, resulting in specific tumor immune response. In vitro, immune reactivation by C24D results in an increase of CD69+ T and CD69+ NK cells, triggering specific killing of TNBC cells. In vivo, C24D induced CD8+ and activated CD56+ tumor infiltrated cells, resulting in tumor apoptosis. Our results should renew interest in molecules targeting CD45, such as the C24D peptide, as a novel strategy for TNBC immunotherapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Apoptose , Mama , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
2.
Front Oncol ; 10: 1500, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042795

RESUMO

To achieve a cure for metastatic breast cancer, further understanding of molecular drivers of the metastatic cascade is essential. Currently, chemotherapy regimens include doxorubicin and paclitaxel which act in part by inducing the unfolded protein response (UPR). The master regulator of the UPR, glucose regulated protein 78 (GRP78), localizes on the surface of tumor cells and is associated with metastatic disease. Cyclic AMP responsive element binding protein 3-like 1 (CREB3L1), a member of the UPR, is a breast cancer metastasis suppressor that acts on cyclic AMP to promote the expression of target genes including GRP78. The aim of the present study was to evaluate the effects of chemotherapy on CREB3L1 and cell-surface GRP78 expression and its association with the development of breast cancer metastasis. For this purpose, we use breast cancer cells migration in vitro assays and an in vivo metastatic mouse model. The results showed that chemotherapy activated CREB3L1 and enhanced cell-surface GRP78 expression specifically in triple-negative breast cancer cells (TNBC), reducing their migration and metastatic potential. CREB3L1 knockout (KO) in the triple negative MDAMB231 cell line using CRISPR/Cas9 technology led to inhibition of GRP78 expression and abrogation of the CREB3L1 metastatic suppression function. Inoculation of CREB3L1-KO MDAMB231 cells into a mouse metastatic model induced a massive metastatic profile which chemotherapy failed to prevent. These findings elucidate a potential pathway to the development of a novel treatment strategy for metastatic TNBC based on modulating CREB3L1 and cell-surface GRP78 expression by chemotherapy and GRP78-targeted drugs.

3.
Mol Cell Endocrinol ; 463: 97-105, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-28392410

RESUMO

The role of protein kinase C (PKC) isoforms (PKCs) in GnRH-stimulated MAPK [ERK1/2, JNK1/2 and p38) phosphorylation was examined in gonadotrope derived cells. GnRH induced a protracted activation of ERK1/2 and a slower and more transient activation of JNK1/2 and p38MAPK. Gonadotropes express conventional PKCα and PKCßII, novel PKCδ, PKCε and PKCθ, and atypical PKC-ι/λ. The use of green fluorescent protein (GFP)-PKCs constructs revealed that GnRH induced rapid translocation of PKCα and PKCßII to the plasma membrane, followed by their redistribution to the cytosol. PKCδ and PKCε localized to the cytoplasm and Golgi, followed by the rapid redistribution by GnRH of PKCδ to the perinuclear zone and of PKCε to the plasma membrane. The use of dominant negatives for PKCs and peptide inhibitors for the receptors for activated C kinase (RACKs) has revealed differential role for PKCα, PKCßII, PKCδ and PKCε in ERK1/2, JNK1/2 and p38MAPK phosphorylation in a ligand-and cell context-dependent manner. The paradoxical findings that PKCs activated by GnRH and PMA play a differential role in MAPKs phosphorylation may be explained by persistent vs. transient redistribution of selected PKCs or redistribution of a given PKC to the perinuclear zone vs. the plasma membrane. Thus, we have identified the PKCs involved in GnRH stimulated MAPKs phosphorylation in gonadotrope derived cells. Once activated, the MAPKs will mediate the transcription of the gonadotropin subunits and GnRH receptor genes.


Assuntos
Gonadotrofos/citologia , Gonadotrofos/enzimologia , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Quinase C/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Humanos , Isoenzimas/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo
4.
Mol Cell Endocrinol ; 439: 141-154, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27810601

RESUMO

We examined the role of PKCs and Ca2+ in GnRH-stimulated p38MAPK phosphorylation in the gonadotrope derived αT3-1 and LßT2 cell lines. GnRH induced a slow and rapid increase in p38MAPK phosphorylation in αT3-1 and LßT2 cells respectively, while PMA gave a slow response. The use of dominant negatives for PKCs and peptide inhibitors for the receptors for activated C kinase (RACKs), has revealed differential role for PKCα, PKCßII, PKCδ and PKCε in p38MAPK phosphorylation in a ligand-and cell context-dependent manner. The paradoxical findings that PKCs activated by GnRH and PMA play a differential role in p38MAPK phosphorylation may be explained by differential localization of the PKCs. Basal, GnRH- and PMA- stimulation of p38MAPK phosphorylation in αT3-1 cells is mediated by Ca2+ influx via voltage-gated Ca2+ channels and Ca2+ mobilization, while in the differentiated LßT2 gonadotrope cells it is mediated only by Ca2+ mobilization. p38MAPK resides in the cell membrane and is relocated to the nucleus by GnRH (∼5 min). Thus, we have identified the PKCs and the Ca2+ pools involved in GnRH stimulated p38MAPK phosphorylation.


Assuntos
Cálcio/metabolismo , Gonadotrofos/efeitos dos fármacos , Gonadotrofos/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Ésteres de Forbol/farmacologia , Proteína Quinase C/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Calcimicina/farmacologia , Linhagem Celular Transformada , Ionomicina/farmacologia , Isoenzimas/metabolismo , Modelos Biológicos , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fatores de Tempo , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...