Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Heliyon ; 7(2): e06109, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33604470

RESUMO

Water scarcity and unreliable weather conditions frequently cause smallholder farmers in Zimbabwe to plant maize (Zea mays L.) varieties outside the optimum planting timeframe. This challenge exacts the necessity to develop sowing management options for decision support. The study's objective was to use a hybrid approach to determine the best planting windows and maize varieties. The combination will guide farmers on planting dates, dry spell probability during critical stages of the crop growth cycle and rainfall cessation. To capture farmer's perception on agroclimatic information, a systematic random sampling of 438 smallholders was carried out. An analysis of climatic data during 1949-2012 was conducted using INSTAT to identify the best planting criterion. The best combination of planting criterion and maize varieties analysis was then achieved by optimizing planting dates and maize varieties in the DSSAT environment. It was found that 56.2% of farmers grew short-season varieties, 40.2% medium-season varieties and 3.6% long-season varieties. It was also established that the number of rain days and maize yield had a strong positive relationship (p = 0.0049). No significant association was found amongst maize yield (p > 0.05), and planting date criteria, Depth (40mm in 4 days), the AREX criterion- Agricultural Research Extension (25 mm rainfall in 7 days) and the MET Criterion-Department of Meteorological Services (40 mm in 15 days). Highest yields were simulated under the combination of medium-season maize variety and the AREX and MET criteria. The range of simulated yields from 0.0 t/ha to 2.8 t/ha formed the basis for the development of an operational decision support tool (cropping calendar) with (RMSE) (0.20). The methodology can be used to select the best suitable maize varieties and a range of planting time.

3.
PLoS One ; 16(1): e0244734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33465120

RESUMO

Several neglected and underutilised species (NUS) provide solutions to climate change and creating a Zero Hunger world, the Sustainable Development Goal 2. Several NUS are drought and heat stress-tolerant, making them ideal for improving marginalised cropping systems in drought-prone areas. However, owing to their status as NUS, current crop suitability maps do not include them as part of the crop choices. This study aimed to develop land suitability maps for selected NUS [sorghum, (Sorghum bicolor), cowpea (Vigna unguiculata), amaranth and taro (Colocasia esculenta)] using Analytic Hierarchy Process (AHP) in ArcGIS. Multidisciplinary factors from climatic, soil and landscape, socio-economic and technical indicators overlaid using Weighted Overlay Analysis. Validation was done through field visits, and area under the curve (AUC) was used to measure AHP model performance. The results indicated that sorghum was highly suitable (S1) = 2%, moderately suitable (S2) = 61%, marginally suitable (S3) = 33%, and unsuitable (N1) = 4%, cowpea S1 = 3%, S2 = 56%, S3 = 39%, N1 = 2%, amaranth S1 = 8%, S2 = 81%, S3 = 11%, and taro S1 = 0.4%, S2 = 28%, S3 = 64%, N1 = 7%, of calculated arable land of SA (12 655 859 ha). Overall, the validation showed that the mapping exercises exhibited a high degree of accuracies (i.e. sorghum AUC = 0.87, cowpea AUC = 0.88, amaranth AUC = 0.95 and taro AUC = 0.82). Rainfall was the most critical variable and criteria with the highest impact on land suitability of the NUS. Results of this study suggest that South Africa has a huge potential for NUS production. The maps developed can contribute to evidence-based and site-specific recommendations for NUS and their mainstreaming. Also, the maps can be used to design appropriate production guidelines and to support existing policy frameworks which advocate for sustainable intensification of marginalised cropping systems through increased crop diversity and the use of stress-tolerant food crops.


Assuntos
Agricultura , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Amaranthus/crescimento & desenvolvimento , Mudança Climática , Colocasia/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento , África do Sul , Desenvolvimento Sustentável , Vigna/crescimento & desenvolvimento
4.
Heliyon ; 6(11): e05358, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33204874

RESUMO

Radar imagery have few polarization bands which can limit the ability to do traditional digital classification. Harmonization of Sentinel-1 and Landsat 8 data despite having complementary texture information can be a challenge. The objectives of this paper are to explore texture features derived from Landsat 8 OLI and dual-polarized Sentinel-1 SAR speckle filtered and unfiltered backscatter, to aggregate classification results using Decision-Level Fusion (DLF), and to evaluate the performance of decision-level fused maps. Gray Level Co-occurrence Matrix (GLCM) is employed to derive sets of seven texture features for Landsat 8 bands and VV + VH backscatter using 5 × 5, 7 × 7, 9 × 9, and 11 × 11 window sizes. Each texture feature is stacked with a respective source image and classified using Support Vector Machine (SVM). Classified maps from the best three performers from both speckle filtered and unfiltered are aggregated with classified maps from Landsat 8 using plurality voting algorithm and compared using Z-test. Results indicate an overall classification accuracy of 96.02% from DLF images of Landsat and non-speckle filtered maps, whereas Landsat and speckle filtered achieved 94.69%. The best texture information are derived from the blue band followed by the red band, whereas speckle unfiltered textures performed better than speckle filtered textures. We conclude that integration of Landsat 8 and Sentinel-1, either speckle filtered or unfiltered, improves crop classification and speckles do not have statistically significant effects (p = 0.1208).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...