Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 347: 119172, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793297

RESUMO

An insightful attempt has been made in this review and the primary objective was to meticulously provide an update on the sustainabilities, advances and challenges pertaining the removal of ammonia from water and wastewater. Specifically, ammonia is a versatile compound that prevails in various spheres of the environment, and if not properly managed, this chemical species could pose severe ecological pressure and toxicity to different receiving environments and its biota. The notorious footprints of ammonia could be traced to anoxic conditions, an infestation of aquatic ecosystems, hyperactivity, convulsion, and methaemoglobin, popularly known as the "blue baby syndrome". In this review, latest updates regarding the sustainabilities, advancements and challenges for the removal of ammonia from aqueous solutions, i.e., river and waste waters, are briefly elucidated in light of future perspectives. Viable routes and ideal hotspots, i.e., wastewater and drinking water, for ammonia removal under the cost-effective options have been unpacked. Key mechanisms for the removal of ammonia were grossly bioremediation, oxidation, adsorption, filtration, precipitation, and ion exchange. Finally, this review denoted biological nutrient removal, struvite precipitation, and breakpoint chlorination as the most effective and promising technologies for the removal of ammonia from aquatic environments, although at the expense of energy and operational cost. Lastly, the future perspective, avenues of exploitation, and technical facets that deserve in-depth exploration are duly underscored.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Amônia/química , Ecossistema , Estruvita/química , Nutrientes , Poluentes Químicos da Água/química
2.
J Environ Manage ; 334: 117506, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801679

RESUMO

The ever-growing contamination of surface water due to various catchment activities poses threats and stress to downstream water treatment entities. Specifically, the presence of ammonia, microbial contaminants, organic matter, and heavy metals has been an issue of paramount concern to water treatment entities since stringent regulatory frameworks require these pollutants to be removed prior to water consumption. Herein, a hybrid approach that integrates struvite crystallization (precipitation) and breakpoint chlorination (stripping) for the removal of ammonia from aqueous solution was evaluated. To fulfil the goals of this study, batch experimental studies were pursued through the adoption of the well-known one-factor-at-a-time (AFAAT) method, specifically the effects of time, concentration/dosage, and mixing speed. The fate of chemical species was underpinned using the state-of-the-art analytical instruments and accredited standard methods. Cryptocrystalline magnesium oxide nanoparticles (MgO-NPs) were used as the magnesium source while the high-test hypochlorite (HTH) was used as the source of chlorine. From the experimental results, the optimum conditions were observed to be, i.e., Stage 1 - struvite synthesis, 110 mg/L of Mg and P dosage (concentration), 150 rpm of mixing speed, 60 min of contact time, and lastly, 120 min of sedimentation while optimum condition for the breakpoint chlorination (Stage 2) were 30 min of mixing and 8:1 Cl2:NH3 weight ratio. Specifically, in Stage 1, i.e., MgO-NPs, the pH increased from 6.7 to ≥9.6, while the turbidity was reduced from 9.1 to ≤1.3 NTU. Mn removal efficacy attained ≥97.70% (reduced from 174 µg/L to 4 µg/L) and Fe attained ≥96.64% (reduced from 11 mg/L to 0.37 mg/L). Elevated pH also led to the deactivation of bacteria. In Stage 2, i.e. breakpoint chlorination, the product water was further polished by eliminating residual ammonia and TPC at 8:1 Cl2-NH3 weight ratio. Interestingly, ammonia was reduced from 6.51 to 2.1 mg/L in Stage 1 (67.74% removal) and then from 2.1 to 0.002 mg/L post breakpoint chlorination (99.96% removal), i.e., stage 2. Overall, synergistic and complementary effects of integrating struvite synthesis and breakpoint chlorination hold great promise for the removal of ammonia from aqueous solutions thus confirming that this technology could potentially be used to curtail the effects of ammonia in the receiving environments and drinking water.


Assuntos
Amônia , Poluentes Químicos da Água , Estruvita/química , Amônia/química , Halogenação , Óxido de Magnésio , Magnésio/química , Fosfatos/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...