Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 22(2): e51184, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33410591

RESUMO

Differentiation of naïve peripheral B cells into terminally differentiated plasma cells is characterized by epigenetic alterations, yet the epigenetic mechanisms that control B-cell fate remain unclear. Here, we identified a role for the histone H3K79 methyltransferase DOT1L in controlling B-cell differentiation. Mouse B cells lacking Dot1L failed to establish germinal centers (GC) and normal humoral immune responses in vivo. In vitro, activated B cells in which Dot1L was deleted showed aberrant differentiation and prematurely acquired plasma cell characteristics. Similar results were obtained when DOT1L was chemically inhibited in mature B cells in vitro. Mechanistically, combined epigenomics and transcriptomics analysis revealed that DOT1L promotes expression of a pro-proliferative, pro-GC program. In addition, DOT1L indirectly supports the repression of an anti-proliferative plasma cell differentiation program by maintaining the repression of Polycomb Repressor Complex 2 (PRC2) targets. Our findings show that DOT1L is a key modulator of the core transcriptional and epigenetic landscape in B cells, establishing an epigenetic barrier that warrants B-cell naivety and GC B-cell differentiation.


Assuntos
Linfócitos B/citologia , Diferenciação Celular , Histona-Lisina N-Metiltransferase , Histonas , Metiltransferases , Animais , Epigênese Genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos
2.
Proc Natl Acad Sci U S A ; 117(49): 31343-31352, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229554

RESUMO

Development of progenitor B cells (ProB cells) into precursor B cells (PreB cells) is dictated by immunoglobulin heavy chain checkpoint (IgHCC), where the IgHC encoded by a productively rearranged Igh allele assembles into a PreB cell receptor complex (PreBCR) to generate signals to initiate this transition and suppressing antigen receptor gene recombination, ensuring that only one productive Igh allele is expressed, a phenomenon known as Igh allelic exclusion. In contrast to a productively rearranged Igh allele, the Igh messenger RNA (mRNA) (IgHR) from a nonproductively rearranged Igh allele is degraded by nonsense-mediated decay (NMD). This fact prohibited firm conclusions regarding the contribution of stable IgHR to the molecular and developmental changes associated with the IgHCC. This point was addressed by generating the IghTer5H∆TM mouse model from IghTer5H mice having a premature termination codon at position +5 in leader exon of IghTer5H allele. This prohibited NMD, and the lack of a transmembrane region (∆TM) prevented the formation of any signaling-competent PreBCR complexes that may arise as a result of read-through translation across premature Ter5 stop codon. A highly sensitive sandwich Western blot revealed read-through translation of IghTer5H message, indicating that previous conclusions regarding a role of IgHR in establishing allelic exclusion requires further exploration. As determined by RNA sequencing (RNA-Seq), this low amount of IgHC sufficed to initiate PreB cell markers normally associated with PreBCR signaling. In contrast, the IghTer5H∆TM knock-in allele, which generated stable IgHR but no detectable IgHC, failed to induce PreB development. Our data indicate that the IgHCC is controlled at the level of IgHC and not IgHR expression.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Alelos , Animais , Biomarcadores/metabolismo , Loci Gênicos , Camundongos Endogâmicos C57BL , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
3.
PLoS One ; 14(1): e0210526, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629682

RESUMO

C9orf82 protein, or conserved anti-apoptotic protein 1 or caspase activity and apoptosis inhibitor 1 (CAAP1) has been implicated as a negative regulator of the intrinsic apoptosis pathway by modulating caspase expression and activity. In contrast, an independent genome wide screen for factors capable of driving drug resistance to the topoisomerase II (Topo II) poisons doxorubicin and etoposide, implicated a role for the nuclear protein C9orf82 in delaying DSBs repair downstream of Topo II, hereby sensitizing cells to DSB induced apoptosis. To determine its function in a genetically defined setting in vivo and ex vivo, we here employed CRISPR/Cas9 technology in zygotes to generate a C9orf82 knockout mouse model. C9orf82ko/ko mice were born at a Mendelian ratio and did not display any overt macroscopic or histological abnormalities. DSBs repair dependent processes like lymphocyte development and class switch recombination (CSR) appeared normal, arguing against a link between the C9orf82 encoded protein and V(D)J recombination or CSR. Most relevant, primary pre-B cell cultures and Tp53 transformed mouse embryo fibroblasts (MEFs) derived from C9orf82ko/ko E14.5 and wild type embryos displayed comparable sensitivity to a number of DNA lesions, including DSBs breaks induced by the topoisomerase II inhibitors, etoposide and doxorubicin. Likewise, the kinetics of γH2AX formation and resolution in response to etoposide of C9orf82 protein proficient, deficient and overexpressing MEFs were indistinguishable. These data argue against a direct role of C9orf82 protein in delaying repair of Topo II generated DSBs and regulating apoptosis. The genetically defined systems generated in this study will be of value to determine the actual function of C9orf82 protein.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo II/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Linfócitos B/citologia , Linfócitos B/metabolismo , Sistemas CRISPR-Cas , Caspase 3/metabolismo , Proliferação de Células , Células Cultivadas , Dano ao DNA , Reparo do DNA , Switching de Imunoglobulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/citologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...