Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Pediatr Neurol ; 157: 114-117, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38908261

RESUMO

BACKGROUND: Caudal regression syndrome (CRS), also known as caudal agenesis, results from abnormal development of the caudal aspect of the spinal cord and vertebral column due to an earlier abnormality of gastrulation. RESULTS: This report showcases a unique scenario where three siblings, devoid of any prior family history or identifiable risk factors, exhibit symptoms of CRS and receive care at a government-run tertiary facility dedicated to children's health. In establishing a concrete diagnosis, we relied on skeletal surveys, comprehensive symptom evaluation, and medical history assessment. Additionally, we recommended further investigation through magnetic resonance imaging and genetic testing to attain a more in-depth understanding and confirmation of the condition. Unfortunately, the financial constraints faced by the parents led to the unfeasibility of pursuing these advanced diagnostic options. Given the rarity of this syndrome and the limited existing literature, our report is a significant contribution. It marks the first comprehensive exploration of CRS from the genetic and familial predisposition perspective, shedding new light on this rare condition. CONCLUSION: This case series pioneers our understanding of the familial and genetic connections between CRS and sacral agenesis. Strikingly, each subsequent generation has experienced more severe manifestations earlier, furnishing compelling evidence that underpins the genetic predisposition to CRS.

2.
Sci Rep ; 14(1): 12567, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821977

RESUMO

In recent years, the growth spurt of medical imaging data has led to the development of various machine learning algorithms for various healthcare applications. The MedMNISTv2 dataset, a comprehensive benchmark for 2D biomedical image classification, encompasses diverse medical imaging modalities such as Fundus Camera, Breast Ultrasound, Colon Pathology, Blood Cell Microscope etc. Highly accurate classifications performed on these datasets is crucial for identification of various diseases and determining the course of treatment. This research paper presents a comprehensive analysis of four subsets within the MedMNISTv2 dataset: BloodMNIST, BreastMNIST, PathMNIST and RetinaMNIST. Each of these selected datasets is of diverse data modalities and comes with various sample sizes, and have been selected to analyze the efficiency of the model against diverse data modalities. The study explores the idea of assessing the Vision Transformer Model's ability to capture intricate patterns and features crucial for these medical image classification and thereby transcend the benchmark metrics substantially. The methodology includes pre-processing the input images which is followed by training the ViT-base-patch16-224 model on the mentioned datasets. The performance of the model is assessed using key metrices and by comparing the classification accuracies achieved with the benchmark accuracies. With the assistance of ViT, the new benchmarks achieved for BloodMNIST, BreastMNIST, PathMNIST and RetinaMNIST are 97.90%, 90.38%, 94.62% and 57%, respectively. The study highlights the promise of Vision transformer models in medical image analysis, preparing the way for their adoption and further exploration in healthcare applications, aiming to enhance diagnostic accuracy and assist medical professionals in clinical decision-making.


Assuntos
Algoritmos , Humanos , Aprendizado de Máquina , Processamento de Imagem Assistida por Computador/métodos , Diagnóstico por Imagem/métodos , Bases de Dados Factuais , Interpretação de Imagem Assistida por Computador/métodos
3.
Heliyon ; 10(5): e26416, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468957

RESUMO

The emergence of federated learning (FL) technique in fog-enabled healthcare system has leveraged enhanced privacy towards safeguarding sensitive patient information over heterogeneous computing platforms. In this paper, we introduce the FedHealthFog framework, which was meticulously developed to overcome the difficulties of distributed learning in resource-constrained IoT-enabled healthcare systems, particularly those sensitive to delays and energy efficiency. Conventional federated learning approaches face challenges stemming from substantial compute requirements and significant communication costs. This is primarily due to their reliance on a singular server for the aggregation of global data, which results in inefficient training models. We present a transformational approach to address these problems by elevating strategically placed fog nodes to the position of local aggregators within the federated learning architecture. A sophisticated greedy heuristic technique is used to optimize the choice of a fog node as the global aggregator in each communication cycle between edge devices and the cloud. The FedHealthFog system notably accounts for drop in communication latency of 87.01%, 26.90%, and 71.74%, and energy consumption of 57.98%, 34.36%, and 35.37% respectively, for three benchmark algorithms analyzed in this study. The effectiveness of FedHealthFog is strongly supported by outcomes of our experiments compared to cutting-edge alternatives while simultaneously reducing number of global aggregation cycles. These findings highlight FedHealthFog's potential to transform federated learning in resource-constrained IoT environments for delay-sensitive applications.

4.
Sci Rep ; 14(1): 6589, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504098

RESUMO

Identifying and recognizing the food on the basis of its eating sounds is a challenging task, as it plays an important role in avoiding allergic foods, providing dietary preferences to people who are restricted to a particular diet, showcasing its cultural significance, etc. In this research paper, the aim is to design a novel methodology that helps to identify food items by analyzing their eating sounds using various deep learning models. To achieve this objective, a system has been proposed that extracts meaningful features from food-eating sounds with the help of signal processing techniques and deep learning models for classifying them into their respective food classes. Initially, 1200 audio files for 20 food items labeled have been collected and visualized to find relationships between the sound files of different food items. Later, to extract meaningful features, various techniques such as spectrograms, spectral rolloff, spectral bandwidth, and mel-frequency cepstral coefficients are used for the cleaning of audio files as well as to capture the unique characteristics of different food items. In the next phase, various deep learning models like GRU, LSTM, InceptionResNetV2, and the customized CNN model have been trained to learn spectral and temporal patterns in audio signals. Besides this, the models have also been hybridized i.e. Bidirectional LSTM + GRU and RNN + Bidirectional LSTM, and RNN + Bidirectional GRU to analyze their performance for the same labeled data in order to associate particular patterns of sound with their corresponding class of food item. During evaluation, the highest accuracy, precision,F1 score, and recall have been obtained by GRU with 99.28%, Bidirectional LSTM + GRU with 97.7% as well as 97.3%, and RNN + Bidirectional LSTM with 97.45%, respectively. The results of this study demonstrate that deep learning models have the potential to precisely identify foods on the basis of their sound by computing the best outcomes.


Assuntos
Aprendizado Profundo , Humanos , Reconhecimento Psicológico , Alimentos , Rememoração Mental , Registros
5.
Diagnostics (Basel) ; 14(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38472941

RESUMO

Malignant lymphoma, which impacts the lymphatic system, presents diverse challenges in accurate diagnosis due to its varied subtypes-chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and mantle cell lymphoma (MCL). Lymphoma is a form of cancer that begins in the lymphatic system, impacting lymphocytes, which are a specific type of white blood cell. This research addresses these challenges by proposing ensemble and non-ensemble transfer learning models employing pre-trained weights from VGG16, VGG19, DenseNet201, InceptionV3, and Xception. For the ensemble technique, this paper adopts a stack-based ensemble approach. It is a two-level classification approach and best suited for accuracy improvement. Testing on a multiclass dataset of CLL, FL, and MCL reveals exceptional diagnostic accuracy, with DenseNet201, InceptionV3, and Xception exceeding 90% accuracy. The proposed ensemble model, leveraging InceptionV3 and Xception, achieves an outstanding 99% accuracy over 300 epochs, surpassing previous prediction methods. This study demonstrates the feasibility and efficiency of the proposed approach, showcasing its potential in real-world medical applications for precise lymphoma diagnosis.

6.
Sci Rep ; 14(1): 5753, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459096

RESUMO

Parasitic organisms pose a major global health threat, mainly in regions that lack advanced medical facilities. Early and accurate detection of parasitic organisms is vital to saving lives. Deep learning models have uplifted the medical sector by providing promising results in diagnosing, detecting, and classifying diseases. This paper explores the role of deep learning techniques in detecting and classifying various parasitic organisms. The research works on a dataset consisting of 34,298 samples of parasites such as Toxoplasma Gondii, Trypanosome, Plasmodium, Leishmania, Babesia, and Trichomonad along with host cells like red blood cells and white blood cells. These images are initially converted from RGB to grayscale followed by the computation of morphological features such as perimeter, height, area, and width. Later, Otsu thresholding and watershed techniques are applied to differentiate foreground from background and create markers on the images for the identification of regions of interest. Deep transfer learning models such as VGG19, InceptionV3, ResNet50V2, ResNet152V2, EfficientNetB3, EfficientNetB0, MobileNetV2, Xception, DenseNet169, and a hybrid model, InceptionResNetV2, are employed. The parameters of these models are fine-tuned using three optimizers: SGD, RMSprop, and Adam. Experimental results reveal that when RMSprop is applied, VGG19, InceptionV3, and EfficientNetB0 achieve the highest accuracy of 99.1% with a loss of 0.09. Similarly, using the SGD optimizer, InceptionV3 performs exceptionally well, achieving the highest accuracy of 99.91% with a loss of 0.98. Finally, applying the Adam optimizer, InceptionResNetV2 excels, achieving the highest accuracy of 99.96% with a loss of 0.13, outperforming other optimizers. The findings of this research signify that using deep learning models coupled with image processing methods generates a highly accurate and efficient way to detect and classify parasitic organisms.


Assuntos
Babesia , Aprendizado Profundo , Parasitos , Toxoplasma , Animais , Microscopia
7.
Cancers (Basel) ; 16(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38398091

RESUMO

In the evolving landscape of medical imaging, the escalating need for deep-learningmethods takes center stage, offering the capability to autonomously acquire abstract datarepresentations crucial for early detection and classification for cancer treatment. Thecomplexities in handling diverse inputs, high-dimensional features, and subtle patternswithin imaging data are acknowledged as significant challenges in this technologicalpursuit. This Special Issue, "Recent Advances in Deep Learning and Medical Imagingfor Cancer Treatment", has attracted 19 high-quality articles that cover state-of-the-artapplications and technical developments of deep learning, medical imaging, automaticdetection, and classification, explainable artificial intelligence-enabled diagnosis for cancertreatment. In the ever-evolving landscape of cancer treatment, five pivotal themes haveemerged as beacons of transformative change. This editorial delves into the realms ofinnovation that are shaping the future of cancer treatment, focusing on five interconnectedthemes: use of artificial intelligence in medical imaging, applications of AI in cancerdiagnosis and treatment, addressing challenges in medical image analysis, advancementsin cancer detection techniques, and innovations in skin cancer classification.

9.
Egypt Heart J ; 76(1): 23, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376703

RESUMO

BACKGROUND: The most prevalent cyanotic congenital heart disease is Tetralogy of Fallot (TOF). It has a variety of presentations and is made up of four anatomic abnormalities. Documented literature shows an incidence of 13-20% of a right aortic arch with an anomalous left subclavian artery among individuals diagnosed with TOF. This is the first case that discusses the rare occurrence of overriding of the aortic arch along with the left aberrant subclavian artery and vertebral defect in a 3-week-old girl. Timely identification and management are pivotal in ensuring the best possible outcomes for these young patients. CASE PRESENTATION: A 3-week-old female child came with complaints of dyspnea, dysphagia, fatigue, and cyanosis on extreme crying, feeding, and moderate activity. Echocardiography revealed severe pulmonary stenosis with right ventricular dilatation and ventricular septal defect (VSD); a chest computed tomography was performed that revealed four characteristic features of TOF (pulmonary artery stenosis, VSD, right aortic root deviation, and concentric right ventricular hypertrophy) along with overriding of the aortic arch accompanied with the left aberrant subclavian artery (compressing the trachea and infundibulum) and vertebral defect (butterfly vertebra). CONCLUSIONS: The case of this 3-week-old female infant emphasizes the importance of early and accurate diagnosis in congenital heart diseases, particularly when faced with complex presentations such as the TOF. It serves as a testament to the valuable role of advanced diagnostic imaging techniques in unraveling the complexity of congenital heart conditions.

11.
PLoS One ; 18(11): e0288793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38032989

RESUMO

This manuscript presents high performance dual polarized eight-element multiple input multiple output (MIMO) fifth generation (5G) smartphone antenna. The design consists of four dual-polarized microstrip diamond-ring slot antennas, positioned at corners of printed circuit board (PCB). Cheap Fr-4 dielectric with permittivity 4.3 and thickness of 1.6mm is used as substrate with overall dimension of 150 × 75 × 1.6 mm3. In mobile system due to limited space mutual coupling between nearby antenna elements is an issue that distort MIMO antenna performance. Defected ground structure is used to control coupling. The defected ground structure has advantages like ease of fabrication, compact size and high efficiency as compare to other techniques. Less than 30dB coupling is achieved for adjacent elements. The -10 dB impedance bandwidth of 700 MHz is achieved for all radiating elements ranging from 3.3 GHz to 4.1 GHz. The value is about 900MHz for -6dB. The proposed antenna offers good results in terms of fundamental antenna parameters like reflection coefficient, transmission coefficient, maximum gain, total efficiency. The antenna achieved average gain more than 3.8dBi and average radiation efficiency more than 80% for single dual polarized element. The antenna provides sufficient radiation coverage in all sides. The MIMO antenna characteristics like diversity gain (DG), envelope correlation coefficient (ECC), total active reflection coefficient (TARC) and channel capacity are calculated and found according to standards. Furthermore, effect of user on antenna performance in data-mode and talk-mode are studied. Proposed design is fabricated and tested in real time. The measured results shows that proposed design can be used in future smartphones applications. The design is compared with some of the existing work and found to be the best one in many parameters and can be used for commercial use.


Assuntos
Diamante , Smartphone , Impedância Elétrica
12.
Sci Rep ; 13(1): 20918, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38017082

RESUMO

In this article, a low-complexity VLSI architecture based on a radix-4 hyperbolic COordinate Rotion DIgital Computer (CORDIC) is proposed to compute the [Formula: see text] root and [Formula: see text] power of a fixed-point number. The most recent techniques use the radix-2 CORDIC algorithm to compute the root and power. The high computation latency of radix-2 CORDIC is the primary concern for the designers. [Formula: see text] root and [Formula: see text] power computations are divided into three phases, and each phase is performed by a different class of the proposed modified radix-4 CORDIC algorithms in the proposed architecture. Although radix-4 CORDIC can converge faster with fewer recurrences, it demands more hardware resources and computational steps due to its intricate angle selection logic and variable scale factor. We have employed the modified radix-4 hyperbolic vectoring (R4HV) CORDIC to compute logarithms, radix-4 linear vectoring (R4LV) to perform division, and the modified scaling-free radix-4 hyperbolic rotation (R4HR) CORDIC to compute exponential. The criteria to select the amount of rotation in R4HV CORDIC is complicated and depends on the coordinates [Formula: see text] and [Formula: see text] of the rotating vector. In the proposed modified R4HV CORDIC, we have derived the simple selection criteria based on the fact that the inputs to R4HV CORDIC are related. The proposed criteria only depend on the coordinate [Formula: see text] that reduces the hardware complexity of the R4HV CORDIC. The R4HR CORDIC shows the complex scale factor, and compensation of such scale factor necessitates the complex hardware. The complexity of R4HR CORDIC is reduced by pre-computing the scale factor for initial iterations and by employing scaling-free rotations for later iterations. Quantitative hardware analysis suggests better hardware utilization than the recent approaches. The proposed architecture is implemented on a Virtex-6 FPGA, and FPGA implementation demonstrates [Formula: see text] less hardware utilization with better error performance than the approach with the radix-2 CORDIC algorithm.

13.
Sci Rep ; 13(1): 18475, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891188

RESUMO

Agriculture plays a pivotal role in the economies of developing countries by providing livelihoods, sustenance, and employment opportunities in rural areas. However, crop diseases pose a significant threat to both farmers' incomes and food security. Furthermore, these diseases also show adverse effects on human health by causing various illnesses. Till date, only a limited number of studies have been conducted to identify and classify diseased cauliflower plants but they also face certain challenges such as insufficient disease surveillance mechanisms, the lack of comprehensive datasets that are properly labelled as well as are of high quality, and the considerable computational resources that are necessary for conducting thorough analysis. In view of the aforementioned challenges, the primary objective of this manuscript is to tackle these significant concerns and enhance understanding regarding the significance of cauliflower disease identification and detection in rural agriculture through the use of advanced deep transfer learning techniques. The work is conducted on the four classes of cauliflower diseases i.e. Bacterial spot rot, Black rot, Downy Mildew, and No disease which are taken from VegNet dataset. Ten deep transfer learning models such as EfficientNetB0, Xception, EfficientNetB1, MobileNetV2, EfficientNetB2, DenseNet201, EfficientNetB3, InceptionResNetV2, EfficientNetB4, and ResNet152V2, are trained and examined on the basis of root mean square error, recall, precision, F1-score, accuracy, and loss. Remarkably, EfficientNetB1 achieved the highest validation accuracy (99.90%), lowest loss (0.16), and root mean square error (0.40) during experimentation. It has been observed that our research highlights the critical role of advanced CNN models in automating cauliflower disease detection and classification and such models can lead to robust applications for cauliflower disease management in agriculture, ultimately benefiting both farmers and consumers.


Assuntos
Aprendizado Profundo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Agricultura , Gerenciamento Clínico , Pesquisa Empírica
14.
Sensors (Basel) ; 23(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37420893

RESUMO

Recently, unmanned aerial vehicles (UAVs) have emerged as a viable solution for data collection from remote Internet of Things (IoT) applications. However, the successful implementation in this regard necessitates the development of a reliable and energy-efficient routing protocol. This paper proposes a reliable and an energy-efficient UAV-assisted clustering hierarchical (EEUCH) protocol designed for remote wireless sensor networks (WSNs) based IoT applications. The proposed EEUCH routing protocol facilitates UAVs to collect data from ground sensor nodes (SNs) that are equipped with wake-up radios (WuRs) and deployed remotely from the base station (BS) in the field of interest (FoI). During each round of the EEUCH protocol, the UAVs arrive at the predefined hovering positions at the FoI, perform clear channel assignment, and broadcast wake-up calls (WuCs) to the SNs. Upon receiving the WuCs by the SNs' wake-up receivers, the SNs perform carrier sense multiple access/collision avoidance before sending joining requests to ensure reliability and cluster-memberships with the particular UAV whose WuC is received. The cluster-member SNs turn on their main radios (MRs) for data packet transmission. The UAV assigns time division multiple access (TDMA) slots to each of its cluster-member SNs whose joining request is received. Each SN must send the data packets in its assigned TDMA slot. When data packets are successfully received by the UAV, it sends acknowledgments to the SNs, after which the SNs turn off their MRs, completing a single round of the protocol. The proposed EEUCH routing protocol with WuR eliminates the issue of cluster overlapping, improves the overall performance, and increases network stability time by a factor of 8.7. It also improves energy efficiency by a factor of 12.55, resulting in a longer network lifespan compared to Low Energy Adaptive Clustering Hierarchy (LEACH) protocol. Moreover, EEUCH collects 5.05 times more data from the FoI than LEACH. These results are based on simulations in which the EEUCH protocol outperformed the existing six benchmark routing protocols proposed for homogeneous, two-tier, and three-tier heterogeneous WSNs.


Assuntos
Internet das Coisas , Reprodutibilidade dos Testes , Coleta de Dados , Benchmarking , Cafeína , Análise por Conglomerados
15.
Nanoscale Adv ; 5(12): 3326-3335, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37325535

RESUMO

In this study, silver nanoclusters protected by the natural tripeptide ligand (GSH@Ag NCs) were constructed for photocatalytic dye degradation. The ultrasmall GSH@Ag NCs were found to exhibit a remarkably high degradation capability. Aqueous solutions of the hazardous organic dye Erythrosine B (Ery. B) and Rhodamine B (Rh. B) were subjected to degradation in the presence of Ag NCs under solar light and white-light LED irradiation. The degradation efficiency of GSH@Ag NCs was evaluated using UV-vis spectroscopy, where Erythrosine B showed considerably high degradation of 94.6% compared to Rhodamine B, which was degraded by 85.1%, corresponding to a 20 mg L-1 degradation capacity in 30 min respectively under solar exposure. Moreover, the degradation efficacy for the above-mentioned dyes demonstrated a dwindling trend under white-light LED irradiation, attaining 78.57 and 67.923% degradation under the same experimental conditions. The astoundingly high degradation efficiency of GSH@Ag NCs under solar-light irradiation was due to the high I of 1370 W for solar light versus 0.07 W for LED light, along with the formation of hydroxyl radicals HO˙ on the catalyst surface initiating degradation due to oxidation.

16.
Sci Rep ; 13(1): 9937, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336964

RESUMO

Colorectal cancer is the third most common type of cancer diagnosed annually, and the second leading cause of death due to cancer. Early diagnosis of this ailment is vital for preventing the tumours to spread and plan treatment to possibly eradicate the disease. However, population-wide screening is stunted by the requirement of medical professionals to analyse histological slides manually. Thus, an automated computer-aided detection (CAD) framework based on deep learning is proposed in this research that uses histological slide images for predictions. Ensemble learning is a popular strategy for fusing the salient properties of several models to make the final predictions. However, such frameworks are computationally costly since it requires the training of multiple base learners. Instead, in this study, we adopt a snapshot ensemble method, wherein, instead of the traditional method of fusing decision scores from the snapshots of a Convolutional Neural Network (CNN) model, we extract deep features from the penultimate layer of the CNN model. Since the deep features are extracted from the same CNN model but for different learning environments, there may be redundancy in the feature set. To alleviate this, the features are fed into Particle Swarm Optimization, a popular meta-heuristic, for dimensionality reduction of the feature space and better classification. Upon evaluation on a publicly available colorectal cancer histology dataset using a five-fold cross-validation scheme, the proposed method obtains a highest accuracy of 97.60% and F1-Score of 97.61%, outperforming existing state-of-the-art methods on the same dataset. Further, qualitative investigation of class activation maps provide visual explainability to medical practitioners, as well as justifies the use of the CAD framework in screening of colorectal histology. Our source codes are publicly accessible at: https://github.com/soumitri2001/SnapEnsemFS .


Assuntos
Neoplasias Colorretais , Redes Neurais de Computação , Humanos , Computadores , Software , Neoplasias Colorretais/diagnóstico
17.
PLoS One ; 18(6): e0287709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37379298

RESUMO

Coverage and capacity are optimized in fifth generation (5G) networks by small base station (SBS) distribution in the coverage realm of macro base station (MBS). However, system performance is significantly reduced by inter-cell interference (ICI) because of the orthogonal frequency division multiple access assumption. In addition to ICI, this work considers intentional jammers' interference (IJI) due to the presence of jammers. These Jammers try to inject undesirable energies into the legitimate communication band, which significantly degrade uplink (UL) signal-to-interference ratio (SIR). To reduce ICI and IJI, in this work, we employ SBS muting, where the SBSs near MBS are switched off. To further mitigate ICI and IJI, we use one of the effective interference management schemes a.k.a reverse frequency allocation (RFA). We presume that due to mitigation in ICI and IJI, the UL coverage performance of the proposed network model can be further improved.


Assuntos
Comunicação , Hidrolases
18.
Sci Rep ; 13(1): 5372, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005398

RESUMO

Industrial Internet of Things (IIoT) seeks more attention in attaining enormous opportunities in the field of Industry 4.0. But there exist severe challenges related to data privacy and security when processing the automatic and practical data collection and monitoring over industrial applications in IIoT. Traditional user authentication strategies in IIoT are affected by single factor authentication, which leads to poor adaptability along with the increasing users count and different user categories. For addressing such issue, this paper aims to implement the privacy preservation model in IIoT using the advancements of artificial intelligent techniques. The two major stages of the designed system are the sanitization and restoration of IIoT data. Data sanitization hides the sensitive information in IIoT for preventing it from leakage of information. Moreover, the designed sanitization procedure performs the optimal key generation by a new Grasshopper-Black Hole Optimization (G-BHO) algorithm. A multi-objective function involving the parameters like degree of modification, hiding rate, correlation coefficient between the actual data and restored data, and information preservation rate was derived and utilized for generating optimal key. The simulation result establishes the dominance of the proposed model over other state-of the-art models in terms of various performance metrics. In respect of privacy preservation, the proposed G-BHO algorithm has achieved 1%, 15.2%, 12.6%, and 1% enhanced result than JA, GWO, GOA, and BHO, respectively.

19.
Ecotoxicol Environ Saf ; 256: 114866, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023649

RESUMO

The multifarious problems created by arsenic (As), for collective environment and human health, serve a cogent case for searching integrative agricultural approaches to attain food security. Rice (Oryza sativa L.) acts as a sponge for heavy metal(loid)s accretion, specifically As, due to anaerobic flooded growth conditions facilitating its uptake. Acclaimed for their positive impact on plant growth, development and phosphorus (P) nutrition, 'mycorrhizas' are able to promote stress tolerance. Albeit, the metabolic alterations underlying Serendipita indica (S. indica; S.i) symbiosis-mediated amelioration of As stress along with nutritional management of P are still understudied. By using biochemical, RT-qPCR and LC-MS/MS based untargeted metabolomics approach, rice roots of ZZY-1 and GD-6 colonized by S. indica, which were later treated with As (10 µM) and P (50 µM), were compared with non-colonized roots under the same treatments with a set of control plants. The responses of secondary metabolism related enzymes, especially polyphenol oxidase (PPO) activities in the foliage of ZZY-1 and GD-6 were enhanced 8.5 and 12-fold, respectively, compared to their respective control counterparts. The current study identified 360 cationic and 287 anionic metabolites in rice roots, and the commonly enriched pathway annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was biosynthesis of phenylalanine, tyrosine and tryptophan, which validated the results of biochemical and gene expression analyses associated with secondary metabolic enzymes. Particularly under As+S.i+P comparison, both genotypes exhibited an upregulation of key detoxification and defense related metabolites, including fumaric acid, L-malic acid, choline, 3,4-dihydroxybenzoic acid, to name a few. The results of this study provided the novel insights into the promising role of exogenous P and S. indica in alleviating As stress.


Assuntos
Arsênio , Oryza , Fósforo , Poluentes do Solo , Humanos , Arsênio/toxicidade , Cromatografia Líquida , Oryza/metabolismo , Oryza/microbiologia , Fósforo/análise , Raízes de Plantas/metabolismo , Metabolismo Secundário , Espectrometria de Massas em Tandem , Poluentes do Solo/toxicidade
20.
J Pak Med Assoc ; 73(Suppl 1)(2): S56-S61, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36788392

RESUMO

Human body has a set of unspecialized cells called as stem cells that have the ability to generate cells of specialized function. Volume of fractionated plasma extracted from autologous blood is termed as Platelet-rich plasma (PRP) that is rich in several growth factors. Both have shown effective results in the field of regenerative medicine. Physiologically, platelets are the first cells to concentrate at the site of tissue damage, therefore application of PRP in diverse surgical procedures enhances bone and soft tissue healing; this same phenomenon is currently being used in otology, head and neck flap surgery and yielding miraculous outcomes. The perspective role of stem cells in regenerative medicine is wrapped in its loosely arranged DNA with working genes; a similar concept is being worked upon in different ENT procedures with groundbreaking results. But still, the data is scarce and there is a dire need for clinical trials, and large population-level studies to further formulate the guidelines on basis of proven evidence.


Assuntos
Otolaringologia , Plasma Rico em Plaquetas , Humanos , Cicatrização , Plaquetas/fisiologia , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...