Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Adv Mater ; : e2403090, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695508

RESUMO

The droplet-based electricity generator (DEG) has facilitated efficient droplet energy harvesting, yet diversifying its applications necessitates the incorporation of various to the DEG. This study first proposes a methodology for advancing the DEG by substituting its conventional metallic electrode with electrically conductive water electrode (WE), which is spontaneously generated during the operation of the DEG with operating liquid. Due to the inherent conductive and fluidic nature of water, the introduction of the WE maintains the electrical output performance of the DEG while imparting functionalities such as high transparency and flexibility. So, the resultant WE applied DEG (WE-DEG) exhibits high optical transmittance (≈99%) and retains its electricity-generating capability under varying deformations, including bending and stretching. This innovation expands the versatility of the DEG, and especially, a sun-raindrop dual-mode energy harvester is demonstrated by hybridizing the WE-DEG and photovoltaic (PV) cell. This hybridization effectively addresses the weather-dependent limitations inherent in each energy harvester and enhances the temperature-induced inefficiencies typically observed in PV cells, thereby enhancing the overall efficiency. The introduction of the WE will be poised to catalyze new developments in DEG research, paving the way for broader applicability and enhanced efficiency in droplet energy harvesting technologies.

2.
RSC Adv ; 14(20): 14438-14451, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38694548

RESUMO

Supercapacitors have substantially altered the landscape of sophisticated energy storage devices with their exceptional power density along with prolonged cyclic stability. On the contrary, their energy density remains low, requiring research to compete with conventional battery storage devices. This study addresses the disparities between energy and power densities in energy storage technologies by exploring the integration of layered double hydroxides (LDH) and highly conductive materials to develop an innovative energy storage system. Four electrodes were fabricated via a hydrothermal process using NiCoCu LDH, Ag-citrate, PANI, and f-SWCNTs. The optimal electrode demonstrated exceptional electrochemical properties; at 0.5 A g-1, it possessed specific capacitances of 807 F g-1, twice as high as those of the pure sample. The constructed asymmetric supercapacitor device attained energy densities of 62.15 W h kg-1 and 22.44 W h kg-1, corresponding to power densities of 1275 W kg-1 and 11 900 W kg-1, respectively. Furthermore, it maintained 100% cyclic stability and a coulombic efficiency of 95% for 4000 charge-discharge cycles. The concept of a supercapacitor of the hybrid grade was reinforced by power law investigations, which unveiled b-values in the interval of 0.5 to 1. This research emphasizes the considerable potential of supercapacitor-grade NiCoCu LDH/Ag-citrate-PANI-f-SWCNTs nanocomposites for superior rate performance, robust cycle stability, and enhanced energy storage capacity.

3.
Acta Radiol ; : 2841851241249161, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751050

RESUMO

BACKGROUND: Advances in molecular imaging strategies have had an effect on precise diagnosis and treatment. Research has been intensified to develop more effective and versatile radiopharmaceuticals to uplift diagnostic efficiency and, consequently, the treatment. PURPOSE: To label the flutamide (FLUT) coupled with diethylenetriamine pentaacetate (DTPA) with technetium-99 m (99mTc) and to evaluate its binding efficiency with rhabdomyosarcoma (RMS) cancer cells. MATERIAL AND METHODS: Radiolabeling of FLUT with 185 MBq freshly eluted 99mTcO4-1 was carried out via DTPA bifunctional chelating agent using stannous chloride reducing agent at pH 5. The labeled compound was assessed for its purity using chromatography analysis, stability in saline and blood serum, AND charge using paper electrophoresis. Normal biodistribution was studied using a mouse model, while binding affinity with RMS cancer cells was studied using an internalization assay. The in vivo accumulation of RMS cancer cells in a rabbit model was monitored using a SPECT gamma camera. RESULTS: Radiolabeling reaction displayed a pharmaceutical yield of 97% and a stability assay showed >95% intact radiopharmaceutical up to 6 h in saline and blood serum. In vitro internalization studies showed the potential of [99mTc]DTPA-FLUT to enter into cancer cells. This biodistribution study showed rapid blood clearance and minimum uptake by body organs, and scintigraphy displayed the [99mTc]DTPA-FLUT uptake by lesion, induced by RMS cancer cell lines in rabbit. CONCLUSION: Stable, newly developed [99mTc]DTPA-FLUT seeks its way to internalize into RMS cancer cells, indicating it could be a potential candidate for the diagnosis of RMS cancer.

4.
RSC Adv ; 14(20): 13837-13849, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38681836

RESUMO

Bimetallic metal-organic frameworks (MOFs) play a significant role in the electrocatalysis of water due to their large surface area and availability of increased numbers of pores. For the inaugural time, we examine the effectiveness of a hexamethylene tetra-amine (HMT)-induced 3D NiCo-MOF-based nanostructure as a potent bifunctional electrocatalyst with superior performance for overall water splitting in alkaline environments. The structural, morphological, and electrochemical properties of the as-synthesized bifunctional catalyst were examined thoroughly before analyzing its behavior towards electrochemical water splitting. The HMT-based NiCo-MOF demonstrated small overpotential values of 274 mV and 330 mV in reaching a maximum current density of 30 mA cm-2 for hydrogen and oxygen evolution mechanisms, respectively. The Tafel parameter also showed favorable HER/OER reaction kinetics, with slopes of 78 mV dec-1 and 86 mV dec-1 determined during the electrochemical evaluation. Remarkably, the NiCo-HMT electrode exhibited a double-layer capacitance of 4 mF cm-2 for hydrogen evolution and 23 mF cm-2 for oxygen evolution, while maintaining remarkable stability even after continuous operation for 20 hours. This research offers a valuable blueprint for implementing a cost-effective and durable MOF-based bifunctional catalytic system that has proven to be effective for complete water splitting. Decomposition of water under higher current densities is crucial for effective long-term generation and commercial consumption of hydrogen.

5.
J Wound Care ; 33(Sup3a): xlviii-lx, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457268

RESUMO

OBJECTIVE: To investigate the role of Mentha piperita silver nanoparticle-loaded carbopol gel for enhanced wound healing in a diabetic rat model. This research further aims to explore bioactive compounds derived from Mentha piperita obtained from high altitude. METHOD: Methanolic extracts of Mentha piperita (MP), Mentha spicata (MS) and Mentha longifolia (ML) were used to synthesise silver nanoparticles (AgNP). AgNP synthesis was confirmed by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antioxidant activity was assessed by 2, 2-diphenyl-1-picrylhydrazyl (DDPH) assay. Antiglycation potential was determined by measuring the fluorescent advanced glycation end products. The bioactive compound identified in the Mentha piperita methanolic (MPM) fraction through electrospray ionisation tandem mass spectrometric analysis (ESI-MS) was responsible for the highest antiglycation. The effects of MPM and MPM.AgNP-loaded Carbopol (Sanare Lab, India) on wound healing were compared in male, alloxan-induced, diabetic albino rats (200-250g), divided into control and treated groups. Effects on wound healing were assessed via histopathology. RESULTS: UV-Vis and FTIR confirmed NP synthesis with peaks for flavonoids and polyphenols. SEM and XRD explored the cubical, 30-63nm crystalline NP. The maximum antioxidant and antiglycation potential was observed in order of; MP.AgNP>MS.AgNP>ML.AgNP. The highest antioxidant activity was observed by methanolic and aqueous MP.AgNPs (88.55% and 83.63%, respectively) at 2mg.ml-1, and (75.16% and 69.73%, respectively) at 1mg.ml-1, compared to ascorbic acid (acting as a positive control, 90.01%). MPM.AgNPs demonstrated the best antiglycation potential of 75.2% and 83.3% at 1mg.ml-1 and 2mg.ml-1, respectively, comparable to positive control (rutin: 88.1%) at 14 days post-incubation. A similar trend was observed for antimicrobial activity against Bacillus subtilis, Micrococcus luteus and Escherichia coli with an inhibition zone of 21mm, 21.6mm and 24.6mm. Rosmarinic acid was the active compound present in Mentha piperita, as identified by ESI-MS. MPM.AgNP-loaded Carbopol resulted in 100% wound closure compared with control at 20 days post-wounding. In the treatment group, re-epithelialisation was achieved by day 18, compared with 25 days for the positive control group. CONCLUSION: MPM.AgNP-loaded Carbopol demonstrated safer and more effective biological properties, hence accelerating the diabetic excision wound healing process in alloxan-induced diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Mentha , Nanopartículas Metálicas , Ratos , Masculino , Animais , Prata/farmacologia , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Mentha piperita , Antioxidantes/farmacologia , Aloxano/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Cicatrização , Coloides , Antibacterianos/farmacologia
6.
Physiol Plant ; 176(1): e14183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343301

RESUMO

Roots are the main sensing organ, initiating multiple signaling pathways in response to abiotic factors, including nutrients, drought, and salt stress. A focus on improving the root system architecture is a key strategy to mitigate these stresses in wheat crop. In the present study, a diversity panel comprising indigenous landraces and historical cultivars from Pakistan was characterized for the root system architecture (RSA) and important loci were identified using a genome-wide association study (GWAS). RSA of the diversity panel was characterized 30 days after sowing in brunch tubes, and root images were taken. A high-throughput root imaging analysis using Rhizovision software was performed by setting the scale to extract the eight RSA traits and four plant biomass-related traits. GWAS identified 323 association signals for 12 root and biomass traits present on all wheat chromosomes, while the most important and reliable genetic loci (based on pleotropic loci and candidate genes) were identified on chromosomes 2A, 2B, 5A, 5D, 6A, 7B, and 7D for RSA. SNP annotation and transcriptome profiling identified nine candidate genes regulating the RSA and plant biomass traits, including ROOTLESS WITH UNDETECTABLE MERISTEM1, MYB TRANSCRIPTION FACTOR4, BRASSINOSTEROID INSENSITIVE1, SLENDER RICE1, AUXIN-RESPONSIVE FACTOR25, SCARECROW, NARROW LEAF2, PIN-FORMED1 AND PHOSPHATE TRANSCRIPTION FACTOR1. This study provided pre-breeding information for deep-rooting genotypes and associated markers that will accelerate the incorporation of such traits in breeding.


Assuntos
Locos de Características Quantitativas , Triticum , Locos de Características Quantitativas/genética , Triticum/genética , Estudo de Associação Genômica Ampla , Fenótipo , Genótipo , Polimorfismo de Nucleotídeo Único
7.
RSC Adv ; 14(3): 2102-2115, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38196904

RESUMO

Metal-organic frameworks (MOFs) are one of the most sought-after materials in the domain of supercapacitors and can be tailored to accommodate diverse compositions, making them amenable to facile functionalization. However, their intrinsic specific capacitance as well as energy density is minimal, which hinders their usage for advanced energy storage applications. Therefore, herein, we have prepared six electrodes, i.e., Ni-Co-Mn MOFs, polyaniline (PANI), and reduced graphene oxide (rGO) along with their novel nanocomposites, i.e., C1, C2, and C3, comprising MOFs : PANI : rGO in a mass ratio of 100 : 1 : 0.5, 100 : 1 : 1, and 100 : 1 : 10, respectively. The polyaniline conducting polymer and rGO enabled efficient electron transport, enhanced charge storage processes, substantial surface area facilitating higher loading of active materials, promoting electrochemical reactions, and ultimately enhanced nanocomposite system performance. As a result, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques confirmed the successful synthesis and revealed distinct morphological features of the materials. Following electrochemical testing, it was observed that composition C2 exhibited the highest performance, demonstrating a groundbreaking specific capacitance of 1007 F g-1 at 1 A g-1. The device showed a good energy density of 25.11 W h kg-1 and a power density of 860 W kg-1. Remarkably, the device demonstrated a capacity retention of 115% after 1500 cycles, which is a clear indication of the wettability factor, according to the literature. The power law indicated b-values in a range of 0.58-0.64, verifying the hybrid-type behavior of supercapacitors.

8.
RSC Adv ; 14(6): 3782-3789, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38274172

RESUMO

Employing a combination of Density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations, the adsorption of molecular hydrogen (H2) on Be3Al2(SiO3)6-beryl, a prominent silicate mineral, has been studied. The crystal structure of beryl, which consists of interconnected tetrahedral and octahedral sites, provides a fascinating framework for comprehending H2 adsorption behavior. Initial investigation of the interaction between H2 molecules and the beryl surface employed DFT calculations. We identified favorable adsorption sites and gained insight into the binding mechanism through extensive structural optimizations and energy calculations. H2 molecules preferentially adsorb on the exposed oxygen atoms surrounding the octahedral sites, producing weak van der Waals interactions with the beryl surface, according to our findings. To further investigate the dynamic aspects of H2 adsorption, MD simulations employing a suitable force field were conducted. To precisely represent interatomic interactions within the Be3Al2(SiO3)6-beryl-H2 system, the force field parameters were meticulously parameterized. By subjecting the system to a variety of temperatures, we were able to obtain valuable information about the stability, diffusion, and desorption kinetics of H2 molecules within the beryl structure. The comprehensive understanding of the H2 adsorption phenomenon on Be3Al2(SiO3)6-beryl is provided by the combined DFT and MD investigations. The results elucidate the mechanisms underlying H2 binding, highlighting the role of surface oxygen atoms and the effect of temperature on H2 dynamics. This research contributes to a fundamental understanding of hydrogen storage and release in beryllium-based silicates and provides valuable guidance for the design and optimization of materials for hydrogen storage, catalysis, gas separation, sensing and environmental applications.

9.
RSC Adv ; 14(3): 1890-1901, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38192328

RESUMO

In this paper, we present a comprehensive analysis of HCl-HCl interactions, including QZVPP calculations, energy fitting, conformation validation, and the determination of the second virial coefficient B using improved Lennard-Jones (ILJ) potential parameters. To acquire accurate interaction energies, initial QZVPP calculations are performed on approximately 1851 randomly generated HCl-HCl conformations. Then, these energies are used to fit an improved Lennard-Jones potential energy surface, allowing for a robust description of HCl-HCl interactions. The ILJ potential parameters are then used to validate particular HCl dimer conformations, ensuring their stability and consistency with experimental observations. The correlation between calculated and experimental conformations strengthens the validity of the ILJ potential parameters. In addition, the second viral coefficient B is calculated at various temperatures using the ILJ potential. The obtained B values are compared to experimental data, demonstrating close agreement, and validating the ILJ potential's ability to accurately capture the intermolecular interactions and gas-phase behavior of the HCl-HCl system. The results of this study demonstrate the effective implementation of QZVPP calculations, energy fitting, and ILJ potential parameters in validating HCl-HCl conformations and accurately determining the second virial coefficient B. The high degree of concordance between calculated B values and experimental data demonstrates the validity of the ILJ potential and its suitability for modeling HCl-HCl interactions. This research contributes to a greater comprehension of HCl-HCl interactions and their implications for numerous chemical and atmospheric processes. The validated conformations, energy fitting method, and calculated second virial coefficients provide valuable instruments for future research and pave the way for more accurate modeling and simulations of HCl-HCl systems.

10.
Environ Res ; 249: 118093, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237759

RESUMO

Plastic pollution has become a major environmental problem because it does not break down and poses risks to ecosystems and human health. This study focuses on the environmentally friendly synthesis of ZnO nanocubes using an extract from Ceropegia omissa H. Huber plant leaves. The primary goal is to investigate the viability of these nanocubes as visible-light photocatalysts for the degradation of bisphenol A (BPA). The synthesized ZnO nanocubes have a highly crystalline structure and a bandgap of 3.1 eV, making them suitable for effective visible-light photocatalysis. FTIR analysis, which demonstrates that the pertinent functional groups are present, demonstrates the chemical bonding and reducing processes that take place in the plant extract. The XPS method also studies zinc metals, oxygen valencies, and binding energies. Under visible light irradiation, ZnO nanocubes degrade BPA by 86% in 30 min. This plant-extract-based green synthesis method provides a long-term replacement for traditional procedures, and visible light photocatalysis has advantages over ultraviolet light. The study's results show that ZnO nanocubes may be good for the environment and can work well as visible light photocatalysts to break down organic pollutants. This adds to what is known about using nanoparticles to clean up the environment. As a result, this study highlights the potential of using environmentally friendly ZnO nanocubes as a long-lasting and efficient method of reducing organic pollutant contamination in aquatic environments.


Assuntos
Compostos Benzidrílicos , Luz , Fenóis , Extratos Vegetais , Poluentes Químicos da Água , Óxido de Zinco , Óxido de Zinco/química , Compostos Benzidrílicos/química , Fenóis/química , Fenóis/análise , Extratos Vegetais/química , Poluentes Químicos da Água/química , Catálise , Química Verde/métodos , Fotólise
11.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37308134

RESUMO

Wheat (Triticum aestivum ) is a major crop around the globe and different techniques are being used for its productivity enhancement. Germplasm evaluation to improve crop productivity mainly depends on accurate phenotyping and selection of genotypes with a high frequency of superior alleles related to the trait of interest. Therefore, applying functional kompetitive allele-specific PCR (KASP) markers for drought-related genes is essential to characterise the genotypes for developing future climate-resilient wheat crop. In this study, eight functional KASP markers and nine morphological traits were employed to evaluate the 40 wheat genotypes for drought tolerance. Morphological traits showed significant variation (P ≤0.05) among the genotypes, except tiller count (TC), fresh root weight (FRW) and dry root weight (DRW). PCA biplot showed that 63.3% phenotypic variation was explained by the first two PCs under control treatment, while 70.8% variation was explained under drought treatment. It also indicated that root length (RL) and primary root (PR) have considerable variations among the genotypes under both treatments and are positively associated with each other. Hence, the findings of this study suggested that both these traits could be used as a selection criterion to classify the drought-tolerant wheat genotypes. KASP genotyping accompanied by morphological data revealed that genotypes Markaz, Bhakar Star, China 2, Aas and Chakwal-50 performed better under drought stress. These outperforming genotypes could be used as parents in developing drought-tolerant wheat genotypes. Hence, KASP genotyping assay for functional genes or significant haplotypes and phenotypic evaluation are prerequisites for a modern breeding program.


Assuntos
Secas , Triticum , Triticum/genética , Alelos , Melhoramento Vegetal , Genótipo , Reação em Cadeia da Polimerase
12.
Sci Data ; 10(1): 884, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065977

RESUMO

Here, we performed RNA-seq based expression analysis of root and leaf tissues of a set of 24 historical spring wheat cultivars representing 110 years of temporal genetic variations. This huge 130 tissues RNAseq dataset was initially used to study expression pattern of 97 genes regulating root growth and development in wheat. Root system architecture (RSA) is an important target for breeding stress-resilient and high-yielding wheat cultivars under climatic fluctuations. However, root transcriptome analysis is usually obscured due to challenges in root research due to their below ground presence. We also validated the dataset by performing correlation analysis between expression of RSA related genes in roots and leaves with 25 root traits analyzed under varying moisture conditions and 10 yield-related traits. The Pearson's correlation coefficients between root phenotypes and expression of root-specific genes varied from -0.72 to 0.78, and strong correlations with genes such as DRO1, TaMOR, ARF4, PIN1 was observed. The presented datasets have multiple uses such as a) studying the change in expression pattern of genes during time, b) differential expression of genes in two very important tissues of wheat i.e., leaf and roots, and c) studying customized expression of genes associated with important phenotypes in diverse wheat cultivars. The initial findings presented here provided key insights into understanding the transcriptomic basis of phenotypic variability of RSA in wheat cultivars.


Assuntos
RNA-Seq , Triticum , Perfilação da Expressão Gênica , Fenótipo , Melhoramento Vegetal , Transcriptoma , Triticum/genética
13.
Mol Biol Rep ; 51(1): 22, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110786

RESUMO

BACKGROUND: Salinity is one of the main abiotic factors that restrict plant growth, physiology, and crop productivity is salt stress. About 33% of the total irrigated land suffers from severe salinity because of intensive underground water extraction and irrigation with brackish water. Thus, it is important to understand the genetic mechanism and identify the novel genes involved in salt tolerance for the development of climate-resilient rice cultivars. METHODS AND RESULTS: In this study, two rice genotypes with varying tolerance to salt stress were used to investigate the differential expressed genes and molecular pathways to adapt under saline soil by comparative RNA sequencing at 42 days of the seedling stage. Salt-susceptible (S3) and -tolerant (S13) genotypes revealed 3982 and 3463 differentially expressed genes in S3 and S13 genotypes. The up-regulated genes in both genotypes were substantially enriched in different metabolic processes and binding activities. Biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and plant signal transduction mechanisms were highly enriched. Salt-susceptible and -tolerant genotypes shared the same salt adaptability mechanism with no significant quantitative differences at the transcriptome level. Moreover, bHLH, ERF, NAC, WRKY, and MYB transcription factors were substantially up-regulated under salt stress. 391 out of 1806 identified novel genes involved in signal transduction mechanisms. Expression profiling of six novel genes further validated the findings from RNA-seq data. CONCLUSION: These findings suggest that the differentially expressed genes and molecular mechanisms involved in salt stress adaptation are conserved in both salt-susceptible and salt-tolerant rice genotypes. Further molecular characterization of novel genes will help to understand the genetic mechanism underlying salt tolerance in rice.


Assuntos
Oryza , Transcriptoma , Transcriptoma/genética , Oryza/metabolismo , Perfilação da Expressão Gênica , Estresse Salino , Genótipo , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética
14.
RSC Adv ; 13(44): 30937-30950, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37876651

RESUMO

Molecular hydrogen (H2) adsorption plays a crucial role in numerous applications, including hydrogen storage and purification processes. Understanding the interaction of H2 with porous materials is essential for designing efficient adsorption systems. In this study, we investigate H2 adsorption on CHA-zeolite using a combination of density functional theory (DFT) and force field-based molecular dynamics (MD) simulations. Firstly, we employ DFT calculations to explore the energetic properties and adsorption sites of H2 on the CHA-zeolite framework. The electronic structure and binding energies of H2 in various adsorption configurations are analyzed, providing valuable insights into the nature of the adsorption process. Subsequently, force field methods are employed to perform extensive MD simulations, allowing us to study the dynamic behavior of H2 molecules adsorbed on the CHA-zeolite surface. The trajectory analysis provides information on the diffusion mechanisms and mobility of H2 within the porous structure, shedding light on the transport properties of the adsorbed gas. Furthermore, the combination of DFT and MD results enables us to validate and refine the force field parameters used in simulations, improving the accuracy of the model, and enhancing our understanding of the H2-CHA interactions. Our comprehensive investigation into molecular hydrogen adsorption on CHA-zeolite using density functional theory and molecular dynamics simulations yields valuable insights into the fundamental aspects of the adsorption process. These findings contribute to the development of advanced hydrogen storage and separation technologies, paving the way for efficient and sustainable energy applications.

15.
RSC Adv ; 13(42): 29632-29644, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37822660

RESUMO

Iron-nickel bimetallic nanoparticles (Fe-Ni BMNPs) are prepared by combining two different metals by using the bottom-up approach. The resulting material has entirely different properties as compared to both the metals. The product is examined by using different analytical instruments such as.; scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), MDIJADE, ORIGIN pro to characterize their morphology, crystallinity and elemental composition and the final data has been statistically analyzed. SEM findings show that most nanoparticles are irregular in form and range in size from 10 nm to 100 nm. The findings of the TEM verified that the particles between 10 nm and 50 nm are irregular in size shape. The products acquired utilized as a fuel additive to monitor oil effectiveness by studying various parameters. The degradation of methylene blue dye depends directly on the concentration of the nanocatalyst. Different parameters also use the freshly prepared bimetallic nanocatalyst to investigate the efficacy of the kerosene fuel. By adding a tiny quantity of the nanocatalyst, the value of the flash point and fire point is significantly reduced. The nanocatalyst does not affect the cloud point and pour point to a large extent. The bimetallic nanocatalyst therefore has very excellent catalytic characteristics.

16.
BMC Public Health ; 23(1): 1612, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37612693

RESUMO

BACKGROUND: Child mortality is a major challenge to public health in Pakistan and other developing countries. Reduction of the child mortality rate would improve public health and enhance human well-being and prosperity. This study recognizes the spatial clusters of child mortality across districts of Pakistan and identifies the direct and spatial spillover effects of determinants on the Child Mortality Rate (CMR). METHOD: Data of the multiple indicators cluster survey (MICS) conducted by the United Nations International Children's Emergency Fund (UNICEF) was used to study the CMR. We used spatial univariate autocorrelation to test the spatial dependence between contiguous districts concerning CMR. We also applied the Spatial Durbin Model (SDM) to measure the spatial spillover effects of factors on CMR. RESULTS: The study results showed 31% significant spatial association across the districts and identified a cluster of hot spots characterized by the high-high CMR in the districts of Punjab province. The empirical analysis of the SDM confirmed that the direct and spatial spillover effect of the poorest wealth quintile and MPI vulnerability on CMR is positive whereas access to postnatal care to the newly born child and improved drinking water has negatively (directly and indirectly) determined the CMR in Pakistan. CONCLUSION: The instant results concluded that spatial dependence and significant spatial spillover effects concerning CMR exist across districts. Prioritization of the hot spot districts characterized by higher CMR can significantly reduce the CMR with improvement in financial statuses of households from the poorest quintile and MPI vulnerability as well as improvement in accessibility to postnatal care services and safe drinking water.


Assuntos
Mortalidade da Criança , Água Potável , Criança , Gravidez , Feminino , Humanos , Paquistão/epidemiologia , Parto , Pobreza
17.
J Phys Chem A ; 127(30): 6175-6185, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37478471

RESUMO

N2O, or nitrous oxide, is an important greenhouse gas with a significant impact on global warming and climate change. To accurately model the behavior of N2O in the atmosphere, precise representations of its intermolecular force fields are required. First principles quantum mechanical calculations followed by appropriate fitting are commonly used to establish such force fields. However, fitting such force fields is challenging due to the complex mathematical functions that describe the molecular interactions of N2O. As such, ongoing research is focused on improving our understanding of N2O and developing more accurate models for use in climate modeling and other applications. In this study, we investigated the strength of the intermolecular interactions in the N2O-N2O dimer using the coupled-cluster theory with single, double, and perturbative triple excitation [CCSD(T)] method with the def2-QZVPP basis set. Our calculations provided a detailed understanding of the intermolecular forces that govern the stability and structure of the N2O dimer. We found that the N2O-N2O dimer is stabilized by a combination of van der Waals forces and dipole-dipole interactions. The calculated interaction energy between the two N2O molecules in the dimer was found to be -5.09 kcal/mol, which is in good agreement with previous theoretical and experimental results. Additionally, we analyzed the molecular properties of the N2O-N2O dimer, including its geometry and charge distribution. Our calculations provide a comprehensive understanding of the intermolecular interactions in the N2O-N2O dimer using the CCSD(T) method with the def2-QZVPP basis set by using the improved Lennard-Jones interaction potential method. These results can be used to improve our understanding of atmospheric chemistry and climate modeling, as well as to aid in the interpretation of experimental data.

18.
PeerJ ; 11: e15646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456879

RESUMO

Sugarcane is one of the critical commercial crops and principal sources of ethanol and sugar worldwide. Unfavorable conditions and poor seed setting rates hinder variety development in sugarcane. Countries like Pakistan directly import fuzz (true seed) and other propagation material from the USA, China, Brazil, etc. In this study, we imported fuzz from China, developed 29 genotypes germinating in the glasshouse, and evaluated at field conditions along with two local checks (CPF-251 and HSF-240). Morphophysiological data were recorded, including plant height (PH), cane length (CL), internodal length (IL), tiller number (TN), brix percentage (B), cane diameter (CD), chlorophyll a (Chl. a), chlorophyll b (Chl. b), and total chlorophyll (T. Chl). Results showed highly significant (p < 0.001) differences among the sugarcane accessions for all the studied traits. High broad-sense heritability (81.89% to 99.91%) was recorded for all the studied parameters. Genetic Advance (GA) ranges from 4.6% to 65.32%. The highest GA was observed for PH (65.32%), followed by CL (63.28%). Chlorophyll leaching assay was also performed at different time points (0, 50, 100, 150, and 200 min). All the genotypes showed the same leaching trend at all times, and better performing genotypes showed less leaching compared to poor performing, indicating the high amount of cutin and wax on the leaf surface. Correlation analysis showed that PH, CL, IL, and TN had significant associations. Principal components analysis (PCA) further confirms these results. Based on PCA and correlation results, PH, CL, IL, and TN can be utilized as a selection criterion for sugarcane improvement. Genotypes such as NS-4a, NS-5, NS-6, NS-8, NS-9, and NS-15 are recommended for future breeding programs related to sugarcane variety development.


Assuntos
Saccharum , Saccharum/genética , Clorofila A , Melhoramento Vegetal/métodos , Fenótipo , Genótipo , Grão Comestível
19.
Mol Biol Rep ; 50(9): 7381-7392, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37450076

RESUMO

BACKGROUND: Alkaline-salt is one of the abiotic stresses that slows plant growth and developmental processes and threatens crop yield. Long non-coding RNAs (lncRNAs) are endogenous RNA found in plants that engage in a variety of cellular functions and stress responses. METHOD: lncRNAs act as competing endogenous RNAs (ceRNA) and constitute a new set of gene control. The precise regulatory mechanism by which lncRNAs function as ceRNAs in response to alkaline-salt stress remains unclear. We identified alkaline-salt responsive lncRNAs using transcriptome-wide analysis of two varieties including alkaline-salt tolerant [WD20342 (WD)] and alkaline-salt sensitive [Caidao (CD)] rice cultivar under control and alkaline-salt stress treated [WD20342 (WDT, and Caidao (CDT)] conditions. RESULTS: Investigating the competitive relationships between mRNAs and lncRNAs, we next built a ceRNA network involving lncRNAs based on the ceRNA hypothesis. Expression profiles revealed that a total of 65, 34, and 1549 differentially expressed (DE) lncRNAs, miRNAs, and mRNAs were identified in alkaline-salt tolerant WD (Control) vs. WDT (Treated). Similarly, 75 DE-lncRNAs, 34 DE-miRNAs, and 1725 DE-mRNAs (including up-regulated and down-regulated) were identified in alkaline-salt sensitive CD (Control) vs. CDT (Treated), respectively. An alkaline-salt stress ceRNA network discovered 321 lncRNA-miRNA-mRNA triplets in CD and CDT, with 32 lncRNAs, 121 miRNAs, and 111 mRNAs. Likewise, 217 lncRNA-miRNA-mRNA triplets in WD and WDT revealed the NONOSAT000455-osa_miR5809b-LOC_Os11g01210 triplet with the highest degree as a hub node with the most significant positive correlation in alkaline-salt stress response. CONCLUSION: The results of our investigation indicate that osa-miR5809b is dysregulated and plays a part in regulating the defense response of rice against alkaline-salt stress. Our study highlights the regulatory functions of lncRNAs acting as ceRNAs in the mechanisms underlying alkaline-salt resistance in rice.


Assuntos
MicroRNAs , Oryza , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Oryza/genética , Oryza/metabolismo , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Salino/genética , RNA Mensageiro/genética
20.
J Phys Chem A ; 127(26): 5591-5601, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37350188

RESUMO

We have investigated the adsorption potential of N2O (nitrous oxide) over graphene. To do this, we utilized various methods and techniques to calculate the potential of N2O over the graphene surface. We performed density functional theory (DFT) calculations for different conformations of N2O on the graphene surface, including parallel, N-up, and O-up and random (∼1000) orientations. We used different force field methods (significantly Improved Lennard-Jones potential) to obtain the best interaction potential that could accurately describe the N2O-graphene adsorption. This involves evaluating the system's potential energy as a function of distance and orientation between the N2O molecule and the graphene surface. By comparing the results of different potential methods, we aimed to identify the most appropriate one that could best describe the adsorption behavior of N2O on graphene. The ultimate goal of the study was to gain insights into the fundamental mechanisms and energetics of N2O adsorption on graphene, which could be useful for a wide range of applications in areas such as catalysis, sensing, and energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...