Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 30(7): 103686, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37292254

RESUMO

The purpose of the current study was to document the variety of predatory spider species present in the cotton fields of two major cotton-producing districts in Punjab, Pakistan, as well as the population dynamics of those spiders. The research was carried out between May and October 2018 and 2019. Manual picking, visual counting, pitfall traps, and sweep netting were the procedures used to collect samples on a biweekly basis. A total of 10,684 spiders comprising 39 species, 28 genera, and 12 families were documented. Araneidae and Lycosidae families contributed a major share to the overall catch of spiders, accounting for 58.55 percent of the total. The Araneidae family's Neoscona theisi ) was the most dominating species, accounting for 12.80% of the total catch and being the dominant species. The estimated spider species diversity was 95%. Their densities were changed over time in the study, but they were highest in the second half of September and the first half of October of both years. The cluster analysis distinguished the two districts and the sites chosen. There was a relationship between humidity and rainfall and the active density of spiders; however, this association was not statistically significant. It is possible to increase the population of spiders in an area by reducing the number of activities detrimental to spiders and other useful arachnids. Spiders are considered effective agents of biological control throughout the world. The findings of the current study will help in the formulation of pest management techniques that can be implemented in cotton growing regions all over the world.

2.
Proteomics ; 14(11): 1424-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24648329

RESUMO

Microgravity severely halts the structural and functional cerebral capacity of astronauts especially affecting their brains due to the stress produced by cephalic fluid shift. We employed a rat tail suspension model to substantiate simulated microgravity (SM) in brain. In this study, comparative mass spectrometry was applied in order to demonstrate the differential expression of 17 specific cellular defense proteins. Gamma-enolase, peptidyl-prolyl cis-trans isomerase A, glial fibrillary acidic protein, heat shock protein HSP 90-alpha, 10 kDa heat shock protein, mitochondrial, heat shock cognate 71 kDa protein, superoxide dismutase 1 and dihydropyrimidinase-related protein 2 were found to be upregulated by HPLC/ESI-TOF. Furthermore, five differentially expressed proteins including 60 kDa heat shock protein, mitochondrial, heat shock protein HSP 90-beta, peroxiredoxin-2, stress-induced-phosphoprotein, and UCHL-1 were found to be upregulated by HPLC/ESI-Q-TOF MS. In addition, downregulated proteins include cytochrome C, superoxide dismutase 2, somatic, and excitatory amino acid transporter 1 and protein DJ-1. Validity of MS results was successfully performed by Western blot analysis of DJ-1 protein. This study will not only help to understand the neurochemical responses produced under microgravity but also will give future direction to cure the proteomic losses and their after effects in astronauts.


Assuntos
Hipotálamo/fisiologia , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Proteoma/análise , Proteômica , Ratos , Simulação de Ausência de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...