Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 7(4): e1349588, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29632714

RESUMO

TGFß secreted by tumor cells and/or tumor infiltrating stromal cells is a key mediator of tumor growth and immune suppression at the tumor site. Nonetheless, clinical trials in cancer patients targeting the TGFß pathway exhibited at best a modest therapeutic benefit. A likely reason, a common limitation of many cancer drugs, is that the physiologic roles of TGFß in tissue homeostasis, angiogenesis, and immune regulation precluded the dose escalation necessary to achieve a profound clinical response. Murine studies have suggested that countering immune suppressive effects of TGFß may be sufficient to inhibit tumor growth. Here we describe an approach to render vaccine-activated CD8+ T cells transiently resistant to TGFß inhibition using an siRNA against Smad4 to inhibit a key step in the canonical TGFß signaling pathway. The siRNA was targeted to vaccine activated CD8+ T cells in the mouse by conjugation to a 4-1BB binding oligonucleotide (ODN) aptamer ligand (4-1BB-Smad4 conjugate). In vitro the 4-1BB-Smad4 conjugate rendered T cells partially resistant to TGFß inhibition, and treatment of tumor bearing mice with systemically administered 4-1BB-Smad4 conjugate enhanced vaccine- and irradiation-induced antitumor immunity. Limiting the inhibitory effects of TGFß to tumor-specific T cells will not interfere with its multiple physiologic roles and hence reduce the risk of toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...