Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 32(16): 162003, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33543734

RESUMO

Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the nanoscale, and experiments at the single particle level have become commonplace. This has opened wide new avenues for exploring and harnessing quantum mechanical effects in condensed matter. These quantum phenomena, in turn, have the potential to revolutionize the way we communicate, compute and probe the nanoscale world. Here, we review developments in key areas of quantum research in light of the nanotechnologies that enable them, with a view to what the future holds. Materials and devices with nanoscale features are used for quantum metrology and sensing, as building blocks for quantum computing, and as sources and detectors for quantum communication. They enable explorations of quantum behaviour and unconventional states in nano- and opto-mechanical systems, low-dimensional systems, molecular devices, nano-plasmonics, quantum electrodynamics, scanning tunnelling microscopy, and more. This rapidly expanding intersection of nanotechnology and quantum science/technology is mutually beneficial to both fields, laying claim to some of the most exciting scientific leaps of the last decade, with more on the horizon.

2.
Phys Rev Lett ; 123(11): 113601, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31573245

RESUMO

Pulsed optomechanical measurements enable squeezing, nonclassical state creation, and backaction-free sensing. We demonstrate pulsed measurement of a cryogenic nanomechanical resonator with record precision close to the quantum regime. We use these to prepare thermally squeezed and purified conditional mechanical states, and to perform full state tomography. These demonstrations exploit large vacuum optomechanical coupling in a nanophotonic cavity to reach a single-pulse imprecision of 9 times the mechanical zero-point amplitude x_{zpf}. We study the effect of other mechanical modes that limit the conditional state width to 58x_{zpf}, and show how decoherence causes the state to grow in time.

3.
Nat Commun ; 8: ncomms16024, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28685755

RESUMO

Although the interaction between light and motion in cavity optomechanical systems is inherently nonlinear, experimental demonstrations to date have allowed a linearized description in all except highly driven cases. Here, we demonstrate a nanoscale optomechanical system in which the interaction between light and motion is so large (single-photon cooperativity C0≈103) that thermal motion induces optical frequency fluctuations larger than the intrinsic optical linewidth. The system thereby operates in a fully nonlinear regime, which pronouncedly impacts the optical response, displacement measurement and radiation pressure backaction. Specifically, we measure an apparent optical linewidth that is dominated by thermo-mechanically induced frequency fluctuations over a wide temperature range, and show that in this regime thermal displacement measurements cannot be described by conventional analytical models. We perform a proof-of-concept demonstration of exploiting the nonlinearity to conduct sensitive quadratic readout of nanomechanical displacement. Finally, we explore how backaction in this regime affects the mechanical fluctuation spectra.

4.
Nat Nanotechnol ; 12(1): 61-66, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27749833

RESUMO

Coherent dressing of a quantum two-level system provides access to a new quantum system with improved properties-a different and easily tunable level splitting, faster control and longer coherence times. In our work we investigate the properties of the dressed, donor-bound electron spin in silicon, and assess its potential as a quantum bit in scalable architectures. The two dressed spin-polariton levels constitute a quantum bit that can be coherently driven with an oscillating magnetic field, an oscillating electric field, frequency modulation of the driving field or a simple detuning pulse. We measure coherence times of and , one order of magnitude longer than those of the undressed spin. Furthermore, the use of the dressed states enables coherent coupling of the solid-state spins to electric fields and mechanical oscillations.

5.
Rev Sci Instrum ; 87(7): 073905, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27475569

RESUMO

Cryogen-free low-temperature setups are becoming more prominent in experimental science due to their convenience and reliability, and concern about the increasing scarcity of helium as a natural resource. Despite not having any moving parts at the cold end, pulse tube cryocoolers introduce vibrations that can be detrimental to the experiments. We characterize the coupling of these vibrations to the electrical signal observed on cables installed in a cryogen-free dilution refrigerator. The dominant electrical noise is in the 5-10 kHz range and its magnitude is found to be strongly temperature dependent. We test the performance of different cables designed to diagnose and tackle the noise, and find triboelectrics to be the dominant mechanism coupling the vibrations to the electrical signal. Flattening a semi-rigid cable or jacketing a flexible cable in order to restrict movement within the cable, successfully reduces the noise level by over an order of magnitude. Furthermore, we characterize the effect of the pulse tube vibrations on an electron spin qubit device in this setup. Coherence measurements are used to map out the spectrum of the noise experienced by the qubit, revealing spectral components matching the spectral signature of the pulse tube.

6.
Nat Nanotechnol ; 11(3): 242-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26571006

RESUMO

Bell's theorem proves the existence of entangled quantum states with no classical counterpart. An experimental violation of Bell's inequality demands simultaneously high fidelities in the preparation, manipulation and measurement of multipartite quantum entangled states, and provides a single-number benchmark for the performance of devices that use such states for quantum computing. We demonstrate a Bell/ Clauser-Horne-Shimony-Holt inequality violation with Bell signals up to 2.70(9), using the electron and the nuclear spins of a single phosphorus atom embedded in a silicon nanoelectronic device. Two-qubit state tomography reveals that our prepared states match the target maximally entangled Bell states with >96% fidelity. These experiments demonstrate complete control of the two-qubit Hilbert space of a phosphorus atom and highlight the important function of the nuclear qubit to expand the computational basis and maximize the readout fidelity.

7.
Sci Adv ; 1(3): e1500022, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26601166

RESUMO

Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single (31)P atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources.

8.
Nat Nanotechnol ; 9(12): 986-91, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25305745

RESUMO

The spin of an electron or a nucleus in a semiconductor naturally implements the unit of quantum information--the qubit. In addition, because semiconductors are currently used in the electronics industry, developing qubits in semiconductors would be a promising route to realize scalable quantum information devices. The solid-state environment, however, may provide deleterious interactions between the qubit and the nuclear spins of surrounding atoms, or charge and spin fluctuations arising from defects in oxides and interfaces. For materials such as silicon, enrichment of the spin-zero (28)Si isotope drastically reduces spin-bath decoherence. Experiments on bulk spin ensembles in (28)Si crystals have indeed demonstrated extraordinary coherence times. However, it remained unclear whether these would persist at the single-spin level, in gated nanostructures near amorphous interfaces. Here, we present the coherent operation of individual (31)P electron and nuclear spin qubits in a top-gated nanostructure, fabricated on an isotopically engineered (28)Si substrate. The (31)P nuclear spin sets the new benchmark coherence time (>30 s with Carr-Purcell-Meiboom-Gill (CPMG) sequence) of any single qubit in the solid state and reaches >99.99% control fidelity. The electron spin CPMG coherence time exceeds 0.5 s, and detailed noise spectroscopy indicates that--contrary to widespread belief--it is not limited by the proximity to an interface. Instead, decoherence is probably dominated by thermal and magnetic noise external to the device, and is thus amenable to further improvement.

9.
Phys Rev Lett ; 112(23): 236801, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24972221

RESUMO

We present the experimental observation of a large exchange coupling J ≈ 300 µeV between two (31)P electron spin qubits in silicon. The singlet and triplet states of the coupled spins are monitored in real time by a single-electron transistor, which detects ionization from tunnel-rate-dependent processes in the coupled spin system, yielding single-shot readout fidelities above 95%. The triplet to singlet relaxation time T(1) ≈ 4 ms at zero magnetic field agrees with the theoretical prediction for J-coupled 31P dimers in silicon. The time evolution of the two-electron state populations gives further insight into the valley-orbit eigenstates of the donor dimer, valley selection rules and relaxation rates, and the role of hyperfine interactions. These results pave the way to the realization of two-qubit quantum logic gates with spins in silicon and highlight the necessity to adopt gating schemes compatible with weak J-coupling strengths.


Assuntos
Fósforo/química , Teoria Quântica , Silício/química , Microscopia Eletrônica
10.
Rep Prog Phys ; 75(4): 046501, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22790509

RESUMO

A superconductor with a gap in the density of states or a quantum dot with discrete energy levels is a central building block in realizing an electronic on-chip cooler. They can work as energy filters, allowing only hot quasiparticles to tunnel out from the electrode to be cooled. This principle has been employed experimentally since the early 1990s in investigations and demonstrations of micrometre-scale coolers at sub-kelvin temperatures. In this paper, we review the basic experimental conditions in realizing the coolers and the main practical issues that are known to limit their performance. We give an update of experiments performed on cryogenic micrometre-scale coolers in the past five years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...