Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Biol Ther ; 17(11): 1139-1148, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27690730

RESUMO

Recently, we showed that the metal chelator TPEN targets colon cancer cells through redox cycling of copper. Here, we studied the DNA damage potential of TPEN and deciphered the role of Chk1, ATM and DNA-PK in TPEN-induced toxicity in 3 human colon cancer cell lines, HCT116, SW480 and HT29. We also investigated the role of reactive oxygen species (ROS) in TPEN-induced DNA damage. TPEN reduced cell viability in a dose- and time-dependent manner. Cytotoxicity was associated with significant DNA damage and higher expression of γ-H2AX protein and activation of ATM/ATR signaling pathway. Cell death by TPEN was dependent on ROS generation as evidenced by the reversal of cell viability, and DNA damage and the abrogation of γ-H2AX levels in the presence of antioxidants. Treatment with antioxidants, however, failed to reverse cytotoxicity at high TPEN concentrations (10µM). TPEN-induced cell death was also dependent on the redox cycling of copper since the copper chelator neocuproine inhibited DNA damage and reduced pChk1, γ-H2AX, and ATM protein expression. Cell death by low TPEN concentrations, involved ATM/ATR signaling in all 3 cell lines, since pre-incubation with specific inhibitors of ATM and DNA-PK led to the recovery of cells from TPEN-induced DNA damage. In addition, siRNA silencing of Chk1, DNA-PK and ATM abrogated the expression of γ-H2AX and reversed cell death, suggesting that Chk1 and DNA-PK mediate TPEN-induced cytotoxicity in colon cancer cells. This study shows for the first time the involvement of Chk1, DNA-PK and ATM in TPEN-induced DNA damage and confirms our previous findings that ROS generation and the redox cycling of copper in response to TPEN are the main mechanisms by which this compound induces cell death in human colon cancer cells. Inhibition of ATM or DNA-PK did not reverse cytotoxicity at high TPEN concentrations that cause excessive levels of ROS and irreversible cellular damage.


Assuntos
Quinase 1 do Ponto de Checagem/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Dano ao DNA , Proteína Quinase Ativada por DNA/genética , Etilenodiaminas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/metabolismo , Quelantes/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...