Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 314(4): H863-H877, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351460

RESUMO

DOCA-salt and obesity-related hypertension are associated with inflammation and sympathetic nervous system hyperactivity. Prejunctional α2-adrenergic receptors (α2ARs) provide negative feedback to norepinephrine release from sympathetic nerves through inhibition of N-type Ca2+ channels. Increased neuronal norepinephrine release in DOCA-salt and obesity-related hypertension occurs through impaired α2AR signaling; however, the mechanisms involved are unclear. Mesenteric arteries are resistance arteries that receive sympathetic innervation from the superior mesenteric and celiac ganglia (SMCG). We tested the hypothesis that macrophages impair α2AR-mediated inhibition of Ca2+ channels in SMCG neurons from DOCA-salt and high-fat diet (HFD)-induced hypertensive rats. Whole cell patch-clamp methods were used to record Ca2+ currents from SMCG neurons maintained in primary culture. We found that DOCA-salt, but not HFD-induced, hypertension caused macrophage accumulation in mesenteric arteries, increased SMCG mRNA levels of monocyte chemoattractant protein-1 and tumor necrosis factor-α, and impaired α2AR-mediated inhibition of Ca2+ currents in SMCG neurons. α2AR dysfunction did not involve changes in α2AR expression, desensitization, or downstream signaling factors. Oxidative stress impaired α2AR-mediated inhibition of Ca2+ currents in SMCG neurons and resulted in receptor internalization in human embryonic kidney-293T cells. Systemic clodronate-induced macrophage depletion preserved α2AR function and lowered blood pressure in DOCA-salt rats. HFD caused hypertension without obesity in Sprague-Dawley rats and hypertension with obesity in Dahl salt-sensitive rats. HFD-induced hypertension was not associated with inflammation in SMCG and mesenteric arteries or α2AR dysfunction in SMCG neurons. These results suggest that macrophage-mediated α2AR dysfunction in the mesenteric circulation may only be relevant to mineralocorticoid-salt excess. NEW & NOTEWORTHY Here, we identify a contribution of macrophages to hypertension development through impaired α2-adrenergic receptor (α2AR)-mediated inhibition of sympathetic nerve terminal Ca2+ channels in DOCA-salt hypertensive rats. Impaired α2AR function may involve oxidative stress-induced receptor internalization. α2AR dysfunction may be unique to mineralocorticoid-salt excess, as it does not occur in obesity-related hypertension.


Assuntos
Fibras Adrenérgicas/metabolismo , Canais de Cálcio Tipo N/metabolismo , Acetato de Desoxicorticosterona , Dieta Hiperlipídica , Hipertensão/metabolismo , Macrófagos/metabolismo , Artérias Mesentéricas/inervação , Receptor Cross-Talk , Receptores Adrenérgicos alfa 2/metabolismo , Cloreto de Sódio na Dieta , Animais , Pressão Arterial , Sinalização do Cálcio , Modelos Animais de Doenças , Retroalimentação Fisiológica , Células HEK293 , Humanos , Hipertensão/etiologia , Hipertensão/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Norepinefrina/metabolismo , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 2/genética
2.
Dis Model Mech ; 10(5): 581-595, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28093506

RESUMO

Severe appetite and weight loss define the eating disorder anorexia nervosa, and can also accompany the progression of some neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). Although acute loss of hypothalamic neurons that produce appetite-stimulating neuropeptide Y (Npy) and agouti-related peptide (Agrp) in adult mice or in mice homozygous for the anorexia (anx) mutation causes aphagia, our understanding of the factors that help maintain appetite regulatory circuitry is limited. Here we identify a mutation (C19T) that converts an arginine to a tryptophan (R7W) in the TYRO3 protein tyrosine kinase 3 (Tyro3) gene, which resides within the anx critical interval, as contributing to the severity of anx phenotypes. Our observation that, like Tyro3-/- mice, anx/anx mice exhibit abnormal secondary platelet aggregation suggested that the C19T Tyro3 variant might have functional consequences. Tyro3 is expressed in the hypothalamus and other brain regions affected by the anx mutation, and its mRNA localization appeared abnormal in anx/anx brains by postnatal day 19 (P19). The presence of wild-type Tyro3 transgenes, but not an R7W-Tyro3 transgene, doubled the weight and lifespans of anx/anx mice and near-normal numbers of hypothalamic Npy-expressing neurons were present in Tyro3-transgenic anx/anx mice at P19. Although no differences in R7W-Tyro3 signal sequence function or protein localization were discernible in vitro, distribution of R7W-Tyro3 protein differed from that of Tyro3 protein in the cerebellum of transgenic wild-type mice. Thus, R7W-Tyro3 protein localization deficits are only detectable in vivo Further analyses revealed that the C19T Tyro3 mutation is present in a few other mouse strains, and hence is not the causative anx mutation, but rather an anx modifier. Our work shows that Tyro3 has prosurvival roles in the appetite regulatory circuitry and could also provide useful insights towards the development of interventions targeting detrimental weight loss.


Assuntos
Anorexia/patologia , Sobrevivência Celular/fisiologia , Longevidade/fisiologia , Neuropeptídeo Y/fisiologia , Mutação Puntual , Receptores Proteína Tirosina Quinases/fisiologia , Animais , Anorexia/genética , Camundongos , Camundongos Transgênicos , Fenótipo , Receptores Proteína Tirosina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...