Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201737

RESUMO

Cosmetics, commonly known as 'makeup' are products that can enhance the appearance of the human body. Cosmetic products include hair dyes, shampoos, skincare, sunscreens, kajal, and other makeup products. Cosmetics are generally applied throughout the face and over the neck region. Sunlight has different wavelengths of light, which include UV-A, UV-B, UV-C, and other radiations. Most cosmetic products have absorption maxima (λmax) in the range of visible light and UV-R. The effect of light-induced photosensitization of cosmetic products, which results in the production of free radicals through type-I and type-II photosensitization mechanisms. Free-radicals-mediated DNA damage and oxidative stress are common consequences of cosmetic phototoxicity. Cosmetic phototoxicity may include percutaneous absorption, skin irritation, eye irritation, photosensitization, mutagenicity, and genotoxicity. Oxidative stress induces membrane lipid peroxidation, glycoxidation, and protein covalent modifications, resulting in their dysfunction. Natural antioxidants inhibit oxidative-stress-induced cosmetic toxicity. Sunlight-induced photodegradation and accumulation of cosmetic photoproducts are also a matter of serious concern. India has tropical weather conditions throughout the year and generally, a majority of human activities such as commerce, agriculture, sports, etc. are performed under bright sunlight conditions. Thus, more focused and dedicated research is warranted to explore the effects of cosmetics on oxidative stress, glycoxidation of biomolecules, and photoproducts accumulation for its total human safety.

2.
J Cell Biochem ; 121(2): 1273-1282, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31709634

RESUMO

Prolonged exposure of the earth's surface to the sun's ultraviolet radiation may result in various skin diseases and cataract. Carbazole (CBZ), as a polycyclic-aromatic hydrocarbon (PAH), is blended with a five-member nitrogen-containing ring. It is found in cigarette smoke, coal, eye kohl, tattoo ink, and wood combustion and affects various types of flora and fauna. Our findings suggest that CBZ generates reactive oxygen species (ROS) like O2•- through type-I photodynamic reaction and causes phototoxicity in the human keratinocyte cell line (HaCaT), which has been proved by mitochondrial dehydrogenase and neutral red uptake assays. CBZ induces single strand DNA damage. We have investigated the involvement of the apoptotic pattern of cell death and confirmed it by cytochrome C release from mitochondria and caspase-9 activation. Similarly, photo-micronuclei formation was associated to CBZ-induced phototoxicity. The results of this study strongly support that the upregulation of bax, cyto-C, apaf-1, casp-9 and down regulation of bcl2, keap-1, nrf-2, and hmox-1 genes cause apoptopic cell death. Downregulation of antioxidant genes showed a significant amount of ROS generation by photosensitized CBZ. Therefore, the current study will be a step forward to safeguard human beings from sunlight-induced photosensitive CBZ prolonged exposure.


Assuntos
Carbazóis/farmacologia , Regulação da Expressão Gênica , Queratinócitos/patologia , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Pele/patologia , Raios Ultravioleta , Apoptose , Células Cultivadas , Citocromos c/metabolismo , Dano ao DNA , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio , Pele/efeitos dos fármacos , Pele/efeitos da radiação
3.
Toxicol Ind Health ; 35(7): 457-465, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31364504

RESUMO

Solar ultraviolet (UV) radiation is the main factor of photocarcinogenesis, photoaging, and photosensitivity; thus protection from biological damaging UV radiation is a concern. Sunscreens containing UV filters are the most preferred means of photoprotection but the safety and efficacy of UV filters are in question. Benzophenone (BP) and its derivatives, namely, benzophenone 1 (BP1), is commonly used in sunscreens as a UV blocker. The aim of this study was to assess the effects of BP and BP1 on the differential expression of proteins in human keratinocytes (HaCaT cells) under exposure to ultraviolet A radiation. Photosensitive proteins were screened from HaCaT cells by two-dimensional (2-D) gel electrophoresis, and identification of these differentially expressed proteins was performed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF)/TOF mass spectrometry. Protein identification was performed using the search program MASCOT and a database made of SUMO and GhJMJ12 amino acid sequences. Our results showed that the proteins involved directly or indirectly in apoptosis are 70 kDa heat shock protein, long-chain specific acyl-CoA dehydrogenase, serine/threonine-protein kinase, and FAM78A protein, which were upregulated in comparison to control HaCaT cells. The expressions of binding immunoglobulin protein, podocalyxin-like protein, actin, cytoplasmic, and calreticulin precursors were downregulated. The altered protein expression indicated that cell growth arrest and apoptosis were potential mechanisms of cytotoxicity and genotoxicity of BPs. The results of 2-D gel electrophoresis followed by mass spectrometry showed expression of novel proteins involved in promoting or initiating apoptotic pathways. Hence, we conclude that BPs should be avoided as a UV blocker from sunscreens because of its potential to promote apoptotic proteins in human skin keratinocytes.


Assuntos
Benzofenonas/farmacologia , Queratinócitos/efeitos dos fármacos , Protetores Solares/farmacologia , Raios Ultravioleta , Apoptose/efeitos dos fármacos , Biomarcadores , Eletroforese em Gel Bidimensional , Proteínas de Choque Térmico/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Toxicol Appl Pharmacol ; 297: 12-21, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26933830

RESUMO

The popularity of hair dyes use has been increasing regularly throughout the world as per the demand of hair coloring fashion trends and other cosmetic products. 2-Amino-3-hydroxypyridine (A132) is widely used as a hair dye ingredient around the world. We are reporting first time the phototoxicity mechanism of A132 under ambient environmental UV-B radiation. It showed maximum absorption in UV-B region (317 nm) and forms a photoproduct within an hour exposure of UV-B irradiation. Photocytotoxicity of A132 in human keratinocytes (HaCaT) was measured by mitochondrial (MTT), lysosomal (NRU) and LDH assays which illustrated the significant reduction in cell viability. The role of reactive oxygen species (ROS) generation for A132 phototoxicity was established photo- chemically as well as intracellularly. Noteworthy, formation of tail DNA (comet assay), micronuclei and cyclobutane pyrimidine dimers (CPDs) (immunocytochemistry) formation confirmed the photogenotoxic potential of dye. Cell cycle study (sub-G1peak) and staining with EB/AO revealed the cell cycle arrest and apoptosis. Further, mitochondrial mediated apoptosis was corroborated by reduced MMP, release of cytochrome c and upregulation of caspase-3. Release of mitochondrial Smac/DIABLO in cytoplasm demonstrated the caspase dependent apoptotic cell death by photolabile A132 dye. In-addition increased Bax/Bcl2 ratio again proved the apoptosis. Thus, study suggests that A132 induces photogenotoxicity, phototoxicity and apoptotic cell death through the involvement of Smac/DIABLO in mitochondrial apoptosis via caspase dependent manner. Therefore, the long term use of A132 dye and sunlight exposure jointly increased the oxidative stress in skin which causes premature hair loss, damage to progenitor cells of hair follicles.


Assuntos
Aminopiridinas , Tinturas para Cabelo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Queratinócitos/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Mutagênicos , Raios Ultravioleta , Aminopiridinas/efeitos da radiação , Aminopiridinas/toxicidade , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA , Tinturas para Cabelo/efeitos da radiação , Tinturas para Cabelo/toxicidade , Humanos , Queratinócitos/metabolismo , Queratinócitos/fisiologia , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Mutagênicos/efeitos da radiação , Mutagênicos/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
9.
J Photochem Photobiol B ; 156: 87-99, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26866294

RESUMO

Rose Bengal (RB) is an anionic water-soluble xanthene dye, which used for many years to assess eye cornea and conjunctiva damage. RB showed strong absorption maxima (λmax) under visible light followed by UV-B and UV-A. RB under sunlight exposure showed a time-dependent photodegradation. Our results show that photosensitized RB generates (1)O2 via Type-II photodynamic pathway and induced DNA damage under sunlight/UV-R exposure. 2'dGuO degradation, micronuclei formation, and single- and double-strand breakage were the outcome of photogenotoxicity caused by RB. Quenching studies with NaN3 advocate the involvement of (1)O2 in RB photogenotoxicity. RB induced linoleic acid photoperoxidation, which was parallel to (1)O2-mediated DNA damage. Oxidative stress in A375 cell line (human melanoma cell line) was detected through DCF-DA assay. Photosensitized RB decreased maximum cellular viability under sunlight followed by UV-B and UV-A exposures. Apoptosis was detected as a pattern of cell death through the increased of caspase-3 activity, decreased mitochondrial membrane potential, and PS translocation through inner to outer plasma membrane. Increased cytosolic levels of Bax also advocate the apoptotic cell death. We propose a p53-mediated apoptosis via increased expression of Bax gene and protein. Thus, the exact mechanism behind RB phototoxicity was the involvement of (1)O2, which induced oxidative stress-mediated DNA and membrane damage, finally apoptotic cell death under natural sunlight exposure. The study suggests that after the use of RB, sunlight exposure may avoid to prevent from its harmful effects.


Assuntos
Melanoma/patologia , Rosa Bengala/química , Rosa Bengala/toxicidade , Luz Solar , Caspase 3/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Ácido Linoleico/química , Melanoma/metabolismo , Potencial da Membrana Mitocondrial , Microscopia Eletrônica de Transmissão , Oxirredução , Dímeros de Pirimidina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Biochem Cell Biol ; 73: 111-126, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26812543

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. The study is retracted due to image duplication reasons: The article contains an image that had already appeared in Free Radic Res, 48.3 (2014): 333­346. DOI 10.3109/10715762.2013.869324. The images are used in both papers but to conclude something entirely different, and suggested that the images have an entirely different biological meaning and treatment. Duplicating images in this way is ethically not acceptable.


Assuntos
DNA Girase/metabolismo , Ofloxacino/metabolismo , Raios Ultravioleta , Apoptose/efeitos da radiação , Dano ao DNA/efeitos da radiação , DNA Bacteriano/efeitos da radiação , Ligação Proteica/efeitos da radiação
11.
Toxicol Lett ; 235(2): 84-95, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25800561

RESUMO

Sunscreen users have been increased, since excessive sun exposure increased the risk of skin diseases. Benzophenone (BP) and its derivatives are commonly used in sunscreens as UV blocker. Its photosafety is concern for human health. Our study showed the role of type-I and type-II radicals in activation of caspase 3 and phototoxicity of BP under sunlight/UV radiation. BP photodegraded and formed two photoproducts. BP generates reactive oxygen species (ROS) singlet oxygen ((1)O2), superoxide anion (O2˙(-)) and hydroxyl radical (˙OH) through type-I and type-II photodynamic mechanisms. Photocytotoxicity significantly reduced cell viability under sunlight, UVB and UVA. DCF fluorescence confirmed intracellular ROS generation. BP showed single strand DNA breakage, further proved by cyclobutane pyrimidine dimmers (CPDs) formation. Lipid peroxidation and LDH leakage were enhanced by BP. P21 dependent cell cycle study showed sub G1 population which advocates apoptotic cell death, confirmed through AO/EB and annexin V/PI staining. BP decreased mitochondrial membrane potential, death protein released and activated caspase. We proposed cytochrome c regulated caspase 3 dependent apoptosis in HaCaT cell line through down regulation of Bcl2/Bax ratio. Phototoxicity potential of its photoproducts is essential to understand its total environmental fate. Hence, we conclude that BP may replace from cosmetics preparation of topical application.


Assuntos
Apoptose/efeitos dos fármacos , Benzofenonas/toxicidade , Caspase 3/metabolismo , Quebras de DNA de Cadeia Simples , Queratinócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Protetores Solares/toxicidade , Apoptose/efeitos da radiação , Benzofenonas/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Radical Hidroxila/metabolismo , Queratinócitos/enzimologia , Queratinócitos/patologia , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Fotólise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Medição de Risco , Transdução de Sinais , Protetores Solares/efeitos da radiação , Superóxidos/metabolismo , Raios Ultravioleta , Proteína X Associada a bcl-2/metabolismo
12.
J Photochem Photobiol B ; 142: 92-102, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25528193

RESUMO

Benz(a)anthracene (BA) is an ubiquitous environmental pollutant of polycyclic aromatic hydrocarbon's (PAHs) family. We showed superoxide (O2(-)) catalyzed BA photo modification and apoptosis in HaCaT keratinocytes under sunlight exposure. O2(-) generation was confirmed by quenching through superoxide dismutase (SOD). BA induced photocytotoxicity were investigated through MTT and NRU assay. We proposed DNA insults such as single and double strand breakage and CPDs formation which results in cell cycle arrest and apoptosis by photosensitized BA. BA induced apoptosis was caspase dependent and occurred through a mitochondrial pathway. Reduction of mitochondrial membrane potential, translocation of Bax to mitochondria and cytochrome c release favors involvement of mitochondria in BA phototoxicity. AO/EB double staining and TEM analysis also support apoptotic cell death. We propose a p21 regulated apoptosis via expression of Bax, and cleaved PARP under sunlight exposure. Thus, we conclude that it is imperative to avoid solar radiation during peak hr (between 11A.M. and 3P.M.) when the amount of solar radiation is high, in the light of DNA damage which may lead to mutation or skin cancer through photosensitized BA under sunlight exposure. Concomitantly, investigation is urgently required for the photosafety of BA photoproducts reaching in the environment through photomodification.


Assuntos
Apoptose/efeitos dos fármacos , Benzo(a)Antracenos/toxicidade , Dano ao DNA/efeitos dos fármacos , Mitocôndrias/metabolismo , Superóxidos/química , Apoptose/efeitos da radiação , Benzo(a)Antracenos/análise , Benzo(a)Antracenos/química , Catálise , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos da radiação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Luz , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Superóxidos/metabolismo , Raios Ultravioleta , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
13.
Parkinsons Dis ; 2014: 262058, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538856

RESUMO

The role of Centella asiatica L. leaf extract was studied on the transgenic Drosophila model flies expressing normal human alpha synuclein (h-αS) in the neurons. The leaf extract was prepared in acetone and was subjected to GC-MS analysis. C. asiatica extract at final concentration of 0.25, 0.50, and 1.0 µL/mL was mixed with the diet and the flies were allowed feeding on it for 24 days. The effect of extract was studied on the climbing ability, activity pattern, lipid peroxidation, protein carbonyl content, glutathione content, and glutathione-S-transferase activity in the brains of transgenic Drosophila. The exposure of extract to PD model flies results in a significant delay in the loss of climbing ability and activity pattern and reduced the oxidative stress (P < 0.05) in the brains of PD flies as compared to untreated PD flies. The results suggest that C. asiatica leaf extract is potent in reducing the PD symptoms in transgenic Drosophila model of Parkinson's disease.

14.
Cell Biol Toxicol ; 30(5): 253-68, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25034908

RESUMO

The present study illustrates the photosensitizing behavior of mefloquine (MQ) in human skin keratinocytes under ambient doses of UVB and sunlight exposure. Photochemically, MQ generated reactive oxygen species superoxide radical, hydroxyl radical, and singlet oxygen through type I and type II photodynamic reactions, respectively, which caused photooxidative damage to DNA and formed localized DNA lesions cyclobutane pyrimidine dimers. Photosensitized MQ reduced the viability of keratinocytes to 25 %. Significant level of intracellular reactive oxygen species (ROS) generation was estimated through fluorescence probe DCF-H2. Increased apoptotic cells were evident through AO/EB staining and phosphatidyl serine translocation in cell membrane. Single-stranded DNA damage was marked through single-cell gel electrophoresis. Mitochondrial membrane depolarization and lysosomal destabilization were evident. Upregulation of Bax and p21 and downregulation of Bcl-2 genes and corresponding protein levels supported apoptotic cell death of keratinocyte cells. Cyclobutane pyrimidine dimers (CPDs) were confirmed through immunofluorescence. In addition, hallmarks of apoptosis and G2/M phase cell cycle arrest were confirmed through flow cytometry analysis. Our findings suggest that MQ may damage DNA and produce DNA lesions which may induce differential biological responses in the skin on brief exposure to UVB and sunlight.


Assuntos
Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Mefloquina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos , Células Cultivadas , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Luz Solar/efeitos adversos , Proteína X Associada a bcl-2/metabolismo
15.
Toxicology ; 314(2-3): 229-37, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24128752

RESUMO

Ketoprofen (KP) is a widely used nonsteroidal anti-inflammatory drug for the treatment of osteoarthritis and various rheumatic diseases. Currently, KP is applied topically on skin as gel to treat symptoms of pain and inflammation. We have studied the photomodification of KP under natural environmental conditions. KP generates reactive oxygen species (ROS) like ¹O2 through Type-II photodynamic reaction. ¹O2 mediated 2'-dGuO photodegradation, single and double strand breakage were significantly induced by photosensitized KP under sunlight/UV-R exposure. Significant intracellular ROS generation was measured through DCF-DA fluorescence. Linoleic acid photoperoxidation and role of ¹O2 were substantiated by using specific quencher like sodium azide. KP induced cell cycle arrest in G2/M phase and cell death through MTT assay. We found apoptosis as the pattern of cell death which was confirmed through caspase-3 activation, cytochrome-c release from mitochondria, up-regulation of Bax protein and phosphatidylserine translocation. Our RT-PCR result strongly supports our view point of apoptotic cell death through up-regulation of p21 and pro-apoptotic Bax genes expression. Mitochondrial depolarization and lysosomal destabilization were also parallel to apoptotic process. Therefore, much attention should be paid to the topical application of KP and sunlight exposure in the light of skin related photosensitivity and cancers.


Assuntos
Dano ao DNA/fisiologia , Dermatite Fototóxica/metabolismo , Cetoprofeno/toxicidade , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Oxigênio Singlete/metabolismo , Anti-Inflamatórios não Esteroides/toxicidade , Dano ao DNA/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Lisossomos/efeitos dos fármacos , Lisossomos/efeitos da radiação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Oxigênio Singlete/efeitos da radiação , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos
16.
Toxicol Lett ; 222(2): 122-31, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23769964

RESUMO

Novel trioxane 97/78, developed by Central Drug Research Institute (CDRI), Lucknow has shown promising antimalarial activity. Clinical experience of anti-malarial drugs registered the occurrence of phototoxicity in patients exposed with sunlight subsequent to medication. Photodegradation study has identified one photo-product up to 4h under UV-B/Sunlight by LC-MS/MS. UV-B irradiated 97/78 compound produced ¹O2 via type-II dependent reaction mechanism, corroborated by its specific quencher. 2'-dGuO degradation and % tail development in photochemical as well as comet test, advocated the genotoxic potential of 97/78. The photocytotoxicity assays (MTT and NRU) on HaCaT cell line revealed the considerable decline in cell viability by 97/78. Cell cycle and Annexin V/PI double stain along with AO/EB demonstrated the G2/M phase arrest and apoptosis. Significant caspase-3 activity was measured in photoexcited 97/78 by colorimetric assay. Fluorescence stain with AO/JC-1 confirmed the lysosomal disruption and mitochondrial membrane destabilization by UV-B irradiated 97/78. Gene expression by RT-PCR showed significant upregulation of p21 and pro-apoptotic Bax, but no change observed in Bcl-2. In conclusion, the study highlights ROS mediated DNA damage, lysosomal and mitochondrial destabilization via upregulation of Bax and activation of caspase-3 which further leads to apoptosis.


Assuntos
Antimaláricos/efeitos adversos , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Dermatite Fototóxica/metabolismo , Queratinócitos/efeitos dos fármacos , Fármacos Fotossensibilizantes/efeitos adversos , Raios Ultravioleta , Antimaláricos/química , Antimaláricos/efeitos da radiação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos da radiação , Caspase 3/química , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Dermatite Fototóxica/patologia , Fase G2/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/patologia , Fotólise/efeitos da radiação , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/efeitos da radiação , Proteínas Proto-Oncogênicas p21(ras)/biossíntese , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Oxigênio Singlete/química , Luz Solar , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/biossíntese , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
17.
J Hazard Mater ; 252-253: 258-71, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23542321

RESUMO

Anthrone a tricyclic aromatic hydrocarbon which is toxic environmental pollutant comes in the environment through photooxidation of anthracene. We have studied the photomodification of anthrone under environmental conditions. Anthrone generates reactive oxygen species (ROS) like (1)O2 through Type-II photodynamic reaction. Significant intracellular ROS generation was measured through dichlorohydrofluorescein fluorescence intensity. The generation of (1)O2 was further substantiated by using specific quencher like sodium azide. UV induced photodegradation of 2-deoxyguanosine and photoperoxidation of linoleic acid accorded the involvement of (1)O2 in the manifestation of anthrone phototoxicity. Phototoxicity of anthrone was done on human keratinocytes (HaCaT) through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red uptake assays. Anthrone induced cell cycle arrest (G2/M-phase) and DNA damage in a concentration dependent manner. We found apoptosis as a pattern of cell death which was confirmed through sub-G1 fraction, morphological changes, caspase-3 activation, acridine orange/ethidium bromide staining and phosphatidylserine translocation. Mitochondrial depolarization and lysosomal destabilization was parallel to apoptotic process. Our RT-PCR results strongly supports our view point of apoptotic cell death through up-regulation of pro-apoptotic genes p21 and Bax, and down regulation of anti-apoptotic gene Bcl2. Therefore, much attention should be paid to concomitant exposure of anthrone and UV-R for its total environmental impact.


Assuntos
Antracenos/efeitos da radiação , Antracenos/toxicidade , Poluentes Ambientais/efeitos da radiação , Poluentes Ambientais/toxicidade , Raios Ultravioleta , Apoptose , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Linoleico/química , Ácido Linoleico/efeitos da radiação , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfatidilserinas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/química , Proteína X Associada a bcl-2/genética
18.
Photochem Photobiol ; 89(3): 655-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23336807

RESUMO

This study aimed to analyze the phototoxic mechanism and photostability of quinine in human skin cell line A375 under ambient intensities of UVA (320-400 nm). Photosensitized quinine produced a photoproduct 6-methoxy-quinoline-4-ylmethyl-oxonium identified through LC-MS/MS. Generation of (1)O2, O2(•-), and (•)OH was measured and further substantiated through their respective quenchers. Photosensitized Quinine (Q) caused degradation of 2-deoxyguanosine, the most sensitive nucleotide to UV radiation. The intracellular ROS was increased in a concentration-dependent manner. Significant reduction in metabolic status measured in terms of cell viability (54%) at 25 µg mL(-1) was observed through MTT assay. Results of MTT assay accord NRU assay. Single strand DNA breaks and apoptosis were increased significantly (P < 0.01) as observed through comet assay and EB/AO double staining. Photosensitized quinine caused cells to arrest in G2 phase of cell cycle and induced apoptosis (5.08%) as revealed through FACS. Real-Time PCR showed upregulation of p21 (4.56 folds) and p53 (2.811 folds) genes expression. Thus, our study suggests that generation of reactive oxygen species by quinine under ambient intensity of UVA may result into deleterious phototoxic effects among human population.


Assuntos
Apoptose , Inibidor de Quinase Dependente de Ciclina p21/genética , Quinina/farmacologia , Pele/metabolismo , Proteína Supressora de Tumor p53/genética , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ensaio Cometa , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos da radiação , Humanos , Radical Hidroxila/metabolismo , Melanoma , Necrose , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Neoplasias Cutâneas , Superóxidos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta , Regulação para Cima
19.
Food Chem Toxicol ; 55: 29-35, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23318758

RESUMO

The role of Eucalyptus citriodora L. leaf extract was studied on the transgenic Drosophila model of flies expressing normal human alpha synuclein (h-αS) in the neurons. These flies exhibit locomotor dysfunction as the age progresses. The leaf extract was prepared in acetone and was subjected to GC-MS analysis. The GC-MS analysis revealed the presence of nine major compounds. E. citriodora extract at final concentration of 0.25, 0.50 and 1.0µl/ml was supplemented with the diet and the flies were allowed to feed for 21days. The effect of extract was studied on the climbing ability and the oxidative stress on the PD model Drosophila expressing normal human alpha synuclein (h-αS) in the neurons. The supplementation of 0.25, 0.50 and 1.0µl/ml of E. citriodora extract showed a dose dependent significant delay in the loss of climbing ability and reduction in the oxidative stress in the brain of PD model flies. The results also support the utility of this model in studying PD symptoms.


Assuntos
Suplementos Nutricionais , Eucalyptus/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Doença de Parkinson/prevenção & controle , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila
20.
Photochem Photobiol ; 87(5): 1067-76, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21668866

RESUMO

The aim of this study was to analyze the photostability and phototoxicity mechanism of anthracene (ANT) in a human skin epidermal cell line (HaCaT) at ambient environmental intensities of sunlight/UV-R (UV-A and UV-B). Photomodification of ANT under sunlight/UV-R exposure produced two photoproducts, anthrone and 9,10 anthracenedione. Generation of (1)O(2), O(2)(•-) and (•)OH was measured under UV-R/sunlight exposure. Involvement of reactive oxygen species (ROS) was further substantiated by their quenching with free radical quenchers. Photodegradation of 2-deoxyguanosine and linoleic acid peroxidation showed that ROS were mainly responsible for ANT phototoxicity. ANT generates significant amount of intracellular ROS in cell line. Maximum cell viability (85%) was reduced under sunlight exposure (30 min). Results of MTT assay accord NRU assay. ANT (0.01 µg mL(-1)) induced cell-cycle arrest at G1 phase. RT-PCR demonstrated constitutive inducible mRNA expression of CYP 1A1 and 1B1 genes. Photosensitive ANT upregulates CYP 1A1 (2.2-folds) and 1B1 (4.1-folds) genes. Thus, the study suggests that ROS and DNA damage were mainly responsible for ANT phototoxicity. ANT exposure may be deleterious to human health at ambient environmental intensities reaching the earth's surface through sunlight.


Assuntos
Antracenos/metabolismo , Dano ao DNA , Epiderme , Fotólise , Fármacos Fotossensibilizantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antracenos/efeitos adversos , Antracenos/química , Antraquinonas/química , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Desoxiguanosina/metabolismo , Células Epidérmicas , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Epiderme/efeitos da radiação , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Humanos , Ácido Linoleico/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Espectrometria de Massas , Fotólise/efeitos dos fármacos , Fotólise/efeitos da radiação , Fármacos Fotossensibilizantes/efeitos adversos , Fármacos Fotossensibilizantes/química , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...