Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 24(1): 230, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867199

RESUMO

BACKGROUND: Diabetes affects 75% of people in low-income countries, where conventional drugs like metformin are available, but newer drugs like alpha-glucosidase inhibitors are not accessible to most Southern African patients. AIM: To evaluate the α-glucosidase and α-amylase inhibitory activities of fractionated aqueous extracts of Kigelia africana fruit (KAFE) and their phytochemical fingerprints using gas chromatography-mass spectrometry (GC-MS). MATERIALS AND METHODS: We studied K. africana fruit fractions' inhibitory effects on alpha-glucosidase and alpha-amylase using bioassay-guided fractionation, and analyzed their phytochemical profiles with GC-MS. KEY FINDINGS: Both the aqueous extract and ethyl acetate fraction of the aqueous extract exhibited a low dose-dependent inhibition of alpha-amylase activity (p < 0.0001). At a concentration of 500 µg/mL, the aqueous extract caused an alpha-glucosidase inhibition of 64.10 ± 2.7%, with an estimated IC50 of 193.7 µg/mL, while the ethyl acetate fraction had an inhibition of 89.82 ± 0.8% and an estimated IC50 of 10.41 µg/mL. The subfraction G, which had the highest alpha-glucosidase inhibitory activity at 85.10 ± 0.7%, had significantly lower activity than the ethyl acetate fraction. The most bioactive fraction was found to contain 11"(2-cyclopenten-1-yl) undecanoic acid, ( +)- and cyclopentane undecanoic acid as well as the indole alkaloids Akuammilan-17-ol-10-methoxy, N-nitroso-2-methyl-oxazolidine and epoxide Oxirane2.2″ -(1.4-butanediyl) bis-. CONCLUSION: The K. africana fruit fraction demonstrated significant alpha-glucosidase inhibitory activity, while its alpha-amylase inhibitory activity was limited. This study suggests a potential natural alpha-glucosidase inhibitor and phytocompounds that could serve as leads for developing antidiabetic agents.


Assuntos
Frutas , Inibidores de Glicosídeo Hidrolases , Extratos Vegetais , Inibidores de Glicosídeo Hidrolases/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Frutas/química , alfa-Glucosidases , alfa-Amilases/antagonistas & inibidores , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química
2.
ScientificWorldJournal ; 2023: 2322068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520845

RESUMO

Combretum zeyheri is traditionally used for the treatment of many infections, including bacterial infections. The aim of this study was to fractionate and evaluate antibacterial activity of the crude extract of C. zeyheri, as well as the surface compounds from the leaves of C. zeyheri, in two pathogenic bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. The antibacterial activities of fractions obtained from chromatographic separations were determined using broth microdilution assay on the laboratory and clinical strains of S. aureus and P. aeruginosa. The fractionation of the compounds on the leaf surface yielded 262 fractions. The fractionated compounds with similar TLC profiles were pooled together to yield 47 pools. The extract and pooled fractions CZSC151154, CZSC155160, and CZSC209213 showed significant antibacterial activity with MIC values ranging from 12.5 µg/ml to 100 µg/ml. The clinical strain of S. aureus had MIC greater than 100 µg/ml for CZSC151154 and CZSC155160. The minimum bactericidal concentration values for these fractions were also in the range of 12.5 µg/ml to 100 µg/ml. The extract and fractions CZSC151154, CZSC155160, and CZSC209213 showed a concentration-dependent inhibition of growth in S. aureus. Analyses of the CZSC209213 pool by LC-MS showed the presence of nine compounds which are (3R,7R)-1,3,7-octanetriol, (-)-tortuosamine, 11-aminoundecanoic acid, 1-piperidinecarboxaldehyde, 3-hydroxy-4-isopropylbenzyl alcohol 3-glucoside, hydroxy-isocaproic acid, oleamide, palmitic amide, phytospingosine, and sphinganine. In conclusion, C. zeyheri leaf surface compounds exhibited antibacterial activity. The crude extract and the pooled fractions showed concentration-dependent inhibition of growth on S. aureus. Results from this study indicate the potential of C. zeyheri as a source of lead compounds that may be further developed into antibacterial drugs.

3.
ScientificWorldJournal ; 2023: 5782656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324654

RESUMO

There is an increase in mortality and morbidity in the health facilities due to nosocomial infections caused by multidrug-resistant nosocomial bacteria; hence, there is a need for new antibacterial agents. Vernonia adoensis has been found to possess medicinal value. Plant phytochemicals may have antimicrobial activity against some resistant pathogens. The antibacterial efficacy of root extracts against Staphylococcus aureus and Pseudomonas aeruginosa was investigated using the microbroth dilution method. All extracts from the roots had an inhibitory effect on the growth of both bacteria, with the most susceptible being P. aeruginosa. The most potent extract was the ethyl acetate extract which caused a percentage inhibition of 86% against P. aeruginosa. The toxicity of the extract was determined on sheep erythrocytes, and its effect on membrane integrity was determined by quantifying the amount of protein and nucleic acid leakage from the bacteria. The lowest concentration of extract used, which was 100 µg/ml, did not cause haemolysis of the erythrocytes, while at 1 mg/ml of the extract, 21% haemolysis was observed. The ethyl acetate extract caused membrane impairment of P. aeruginosa, leading to protein leakage. The effect of the extract on the biofilms of P. aeruginosa was determined in 96-microwell plates using crystal violet. In the concentration range of 0-100 µg/ml, the extract inhibited the formation of biofilms and decreased the attachment efficiency. The phytochemical constituents of the extract were determined using gas chromatography-mass spectrometry. Results of analysis showed the presence of 3-methylene-15-methoxy pentadecanol, 2-acetyl-6-(t-butyl)-4-methylphenol, 2-(2,2,3,3-tetrafluoropropanoyl) cyclohexane-1,4-dione, E,E,Z-1,3,12-nonadecatriene-5,14-diol, and stigmasta-5,22-dien-3-ol. Fractionation and purification will elucidate the potential antimicrobial compounds which are present in the roots of V. adoensis.


Assuntos
Anti-Infecciosos , Vernonia , Animais , Ovinos , Pseudomonas aeruginosa , Vernonia/química , Hemólise , Extratos Vegetais , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Biofilmes , Compostos Fitoquímicos/farmacologia
4.
Biochem Res Int ; 2021: 5599129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745663

RESUMO

Treatment of infections caused by S. aureus has become a challenge due to the emergency of resistant strains. Ozoroa reticulata root extracts have been used in traditional medicine to treat throat and chest pains in Zimbabwe. The objective of the study was to determine the effects of O. reticulata root bark extracts on the production of extracellular proteases by S. aureus. The root barks were collected, dried, and crushed into powder. To obtain different phytoconstituents, plant extractions were performed. Extractions were carried out using two solvent mixtures: ethanol : water (50 : 50 v/v) and dichloromethane : methanol (50 : 50 v/v). Serial exhaustive extractions were also performed using methanol, ethanol, dichloromethane, acetone, ethyl acetate, hexane, and water. The broth microdilution assays were used to assess the antibacterial effects of the Ozoroa reticulata root bark extracts against S. aureus. Ciprofloxacin was used as a positive control. Qualitative screening for extracellular protease production by S. aureus on BCG-skim milk agar plates using the most potent extract was carried out. The proteolytic zones were measured and expressed as the ratio of the diameter of the colony to the total diameter of the colony plus the zone of hydrolysis (P z values). The ethyl acetate extract was found to be the most potent inhibitor of the growth of S. aureus with 99% inhibition and a minimum inhibitory concentration (MIC) of 100 µg/mL. Inhibition of extracellular protease production was directly proportional to the concentration of the extract. At 100 µg/mL, the ethyl acetate extract had a P z value of 0.84, indicative of mild proteolytic activity. A P z value of 0.94 was observed at a concentration of 200 µg/mL and signified weak proteolytic activity. In conclusion, the extract inhibited the production of extracellular proteases in S. aureus. Further work on the isolation and purification of bioactive compounds responsible for inhibiting the production of extracellular proteases is of importance in the discovery of agents with antivirulent effects on S. aureus.

5.
ScientificWorldJournal ; 2021: 8856147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594161

RESUMO

Candida albicans and Candida tropicalis are the leading causes of human fungal infections worldwide. There is an increase in resistance of Candida pathogens to existing antifungal drugs leading to a need to find new sources of antifungal agents. Tormentic acid has been isolated from different plants including Callistemon citrinus and has been found to possess antimicrobial properties, including antifungal activity. The study aimed to determine the effects of tormentic and extracts from C. citrinus on C. albicans and C. tropicalis and a possible mode of action. The extracts and tormentic acid were screened for antifungal activity using the broth microdilution method. The growth of both species was inhibited by the extracts, and C. albicans was more susceptible to the extract compared to C. tropicalis. The growth of C. albicans was inhibited by 80% at 100 µg/ml of both the DCM: methanol extract and the ethanol: water extract. Tormentic acid reduced the growth of C. albicans by 72% at 100 µg/ml. The effects of the extracts and tormentic acid on ergosterol content in C. albicans were determined using a UV/Vis scanning spectrophotometer. At concentrations of tormentic acid of 25 µg/ml, 50 µg/ml, 100 µg/ml, and 200 µg/ml, the content of ergosterol was decreased by 22%, 36%, 48%, and 78%, respectively. Similarly, the DCM: methanol extract at 100 µg/ml and 200 µg/ml decreased the content by 78% and 88%, respectively. A dose-dependent decrease in ergosterol content was observed in cells exposed to miconazole with a 25 µg/ml concentration causing a 100% decrease in ergosterol content. Therefore, tormentic acid inhibits the synthesis of ergosterol in C. albicans. Modifications of the structure of tormentic acid to increase its antifungal potency may be explored in further studies.


Assuntos
Candida albicans/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Ergosterol/biossíntese , Melaleuca/química , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Antifúngicos/farmacologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida tropicalis/crescimento & desenvolvimento , Candida tropicalis/metabolismo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Folhas de Planta/química , Especificidade da Espécie , Espectrofotometria Ultravioleta
6.
Biochem Res Int ; 2021: 9946183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221506

RESUMO

Triumfetta welwitschii has been used as a traditional medicine in Africa. It is documented as a rich source of phytochemicals with antibacterial activities. To further explore the antibacterial potential of these phytochemical components, the phytochemical profile of the dichloromethane: methanol leaf extract from T. welwitschii was investigated using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Compounds were isolated from the extract using column chromatography and thin-layer chromatography. Compound B1 was isolated from the fraction eluted by 90 hexane:10 ethyl acetate using column chromatography. The antibacterial activity of B1 against Pseudomonas aeruginosa was evaluated in vitro using the broth microdilution method and the iodonitrotetrazolium (INT) colorimetric assay. The antibiofilm activities of the extract and B1 against P. aeruginosa were determined by quantifying the biofilms using crystal violet. The effect of the extract and B1 on capsular polysaccharide and extracellular DNA content of biofilm formed by P. aeruginosa was determined using phenol-sulphuric acid and propidium iodide, respectively. A total of 28 peaks were detected and identified using UPLC-MS/MS. The three most abundant phytochemicals identified were catechin, umbelliferone, and a luteolin derivative. B1 showed antibacterial activity against P. aeruginosa with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) value of 25 µg/ml. Only 38% and 6% of the biofilms were formed in the presence of the extract and B1, respectively. The extract and B1 reduced the capsular polysaccharide content in biofilms formed in P. aeruginosa by 40% and 65%, respectively. The extract and B1 significantly reduced the extracellular DNA content of biofilms by 29% and 72%, respectively. The results of this study provide evidence of the antibacterial and antibiofilm activities of B1 and leaf extracts from T. welwitschii. Future work should identify the chemical structure of B1 using nuclear magnetic resonance and mass spectrometry.

7.
Adv Pharmacol Pharm Sci ; 2021: 8842629, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763648

RESUMO

The widespread use of antimicrobial agents to treat infectious diseases has led to the emergence of antibiotic resistant pathogens. Plants have played a central role in combating many ailments in humans, and Parinari curatellifolia has been used for medicinal purposes. Seven extracts from P. curatellifolia leaves were prepared using serial exhaustive extraction of nonpolar to polar solvents. The microbroth dilution method was used to evaluate antimicrobial bioactivities of extracts. Five of the extracts were significantly active against at least one test microbe. Mycobacterium smegmatis was the most susceptible to most extracts. The methanol and ethanol extracts were the most active against M. smegmatis with an MIC of 25 µg/mL. The hexane extract was the most active against Candida krusei with an MIC of 25 µg/mL. None of the extracts significantly inhibited growth of Klebsiella pneumoniae and Staphylococcus aureus. Active extracts were selected for fractionation and isolation of pure compounds using gradient elution column chromatography. TLC analyses was carried out for pooling fractions of similar profiles. A total of 43 pools were obtained from 428 fractions. Pools 7 and 10 were selected for further isolation of single compounds. Four compounds, Pc4963r, Pc4962w, Pc6978p, and Pc6978o, were isolated. Evaluation of antimicrobial activities of Pc4963r, Pc4962w, and Pc6978p showed that the compounds were most active against C. krusei with MFC values ranging from 50 to 100 µg/mL. Only Pc6978p was shown to be pure. Using spectroscopic analyses, the structure of Pc6978p was determined to be ß-sitosterol. The antifungal effects of ß-sitosterol were evaluated against C. krusei in vitro and on fabrics. Results showed that ß-sitosterol reduced the growth of C. krusei attached to Mendy fabric by 83%. Therefore, P. curatellifolia can be a source of lead compounds for prospective development of novel antimicrobial agents. Further work needs to be done to improve the antifungal activity of the isolated compound using quantitative structure-activity relationships.

8.
Adv Pharmacol Pharm Sci ; 2021: 6616133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33629066

RESUMO

Plants have been used traditionally by people in treating and the management of diseases since time immemorial. Traditional medicines including the herbal medicines are used for primary healthcare in some domains in almost every country. Approximately 80% of the population in developing coutries depend on plants as their source of medicine for combating diseases. New and effective antimicrobial agents that have novel mechanism of actions are required. Piliostigma thonningii (Schumach.) Milne-Redh. is a species of flowering plants in the legume family, Fabaceae. Different parts of the P. thonningii plants such as the roots, leaves, seeds, and fruits have been used in treating wounds, heart pain, and gingivitis and as cough remedy. This study focused on determining the antimicrobial properties found in the pods of P. thonningii. The sample was prepared by grinding the dried pods into a fine powder. Successive extraction and extraction with 1 : 1 DCM: methanol was used. The antimicrobial assay was carried out using the broth microdilution and MTT assay. The microorganism used for the tests was Pseudomonas aeruginosa, Candida krusei and Mycobacterium smegmatis. The most potent extract was then used to determine its effect on microbial cell membrane integrity. The results showed that methanol extract had the highest percentage yield of 5%. The extract with the highest antimicrobial effects was ethanol extract with the 100 µg/mL concentration inhibiting the growth of cells to 26%, 87%, and 90% for P. aeruginosa, M. smegmatis, and C. krusei, respectively. The ethanol extracts caused significant leakage of proteins in these microorganisms. In conclusion, the pods of P. thonningii contain phytochemicals with antimicrobial properties. The pods of the plant can be a source of phytochemicals that can serve as sources of lead compounds with antimicrobial effects. One of the mechanisms of action of these phytochemicals is via membrane-damaging effects on microbes.

9.
Biomed Res Int ; 2021: 6049728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33623782

RESUMO

Combretum zeyheri and Combretum platypetalum have been shown to have anticancer, antibacterial, antituberculosis, and antifungal effects in both in vivo and in vitro studies. This study sought to evaluate the antiproliferative effects of compounds isolated from C. zeyheri and C. platypetalum on Jurkat T and HL-60 cancer cell lines in combination with doxorubicin and/or chlorambucil. At their GI50 concentrations, the isolated compounds were combined with the corresponding GI50 of chlorambucil and doxorubicin. The cytotoxic effects of the combined compounds were determined on BALB/c mouse peritoneal cells. All the 4 isolated compounds had significant cytotoxic effects on Jurkat T cells. Compounds CP 404 (1), CP 409 (2), CZ 453 (3), and CZ 455 (4) had GI50s on Jurkat T cells of 3.98, 19.33, 6.82, and 20.28 µg/ml, respectively. CP 404 (1), CP 409 (2), CZ 453 (3), and CZ 455 (4) showed GI50s of 14.18, 28.69, 29.87, and 16.46 µg/ml on HL-60 cancer cell lines, respectively. The most potent combination against Jurkat T cells was found to be CP 404 (1) and chlorambucil. This combination showed no cytotoxic effects when tested on BALB/c mouse peritoneal cells. It was concluded that the compounds extracted from C. zeyheri and C. platypetalum inhibit the growth of Jurkat T cells in vitro. The combination of the compounds with anticancer drugs enhanced their anticancer effects. The combination of CP 404 (1) and chlorambucil was found not to be toxic to normal mammalian cells. Therefore, CP 404 (1), 3-O-ß-L-rrhamnopyranosyl-5,7,3'4',5'-pentahydroxyflavone, has the potential to be a source of lead compounds that can be developed for anticancer therapy. Further structure-activity relationship studies on this compound are warranted.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Combretum/química , Extratos Vegetais/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células HL-60 , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos BALB C , Cavidade Peritoneal/citologia
10.
Adv Pharmacol Pharm Sci ; 2020: 8848606, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33225299

RESUMO

ESKAPE pathogens, namely, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, are responsible for a majority of all healthcare-acquired infections (HAI). The bacteria cause nosocomial infections in immunocompromised patients. Extracts from Callistemon viminalis have been shown to have antibacterial, antifungal, and anti-inflammatory activities. Tormentic acid congener, a pentacyclic triterpene saponin, was isolated from C. viminalis leaves. This study aimed to investigate the antibacterial effects of tormentic acid congener and leaf extracts on biofilm formation by A. baumannii, S. aureus, S. pyogenes, and P. aeruginosa. The antibacterial effects were determined by the microbroth dilution method, and ciprofloxacin was used as the standard antibacterial drug. Biofilm formation and detachment assays were performed using crystal violet staining. Production of extracellular polymeric DNA and polysaccharides from biofilms was also determined. Tormentic acid congener showed time-dependent antibacterial activity against P. aeruginosa with a MIC of 100 µg/ml and caused significant protein leakage. Antibacterial activity was found when tormentic acid congener was tested against both S. aureus and P. aeruginosa. The MICs were found to be 25 µg/ml and 12.5 µg/ml for P. aeruginosa and S. aureus cells, respectively. S. pyogenes was found to be susceptible to tormentic acid congener and the hydroethanolic extract with an MIC of 100 µg/ml and 25 µg/ml, respectively. A. baumannii was found not to be susceptible to the compound or the extracts. The compound and the extracts caused a significant decrease in the biofilm extracellular polysaccharide content of S. pyogenes. The extracts and tormentic acid congener caused detachment of biofilms and decreased the release of extracellular DNA and capsular polysaccharides from biofilms of P. aeruginosa and S. aureus. Tormentic acid congener and extracts, thus, have significant antibacterial and antibiofilm activities on these selected ESKAPE bacteria and can act as source lead compounds for the development of antibacterial triterpenoids.

11.
J Toxicol ; 2020: 8831545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178265

RESUMO

Despite plants being a rich source of useful chemical compounds with different pharmacological properties, some of these compounds may be toxic to humans. Parinari curatellifolia, among its other important pharmacological activities, has been shown to have significant antiproliferative activity on cancer cell lines. Toxicity studies are required to determine the safety profile of P. curatellifolia in the consideration of its potential pharmaceutical benefits as a source of lead compounds in cancer therapy. The effects of P. curatellifolia on both the integrity of the erythrocyte membrane and on normal cells were determined. The dried leaf powder of P. curatellifolia was used in serial exhaustive extraction procedures using hexane, dichloromethane, ethyl acetate, acetone, ethanol, methanol, and water as solvents in addition to extraction using DCM: methanol in equal ratio. Alkaloids, flavonoids, and saponins were isolated from the ethanol extract. The leaf extracts were tested for haemolytic activity on sheep erythrocytes at concentrations of 0.625 to 5 mg/ml. The extracts were also tested for toxicity activity on normal mammalian cells such as the BALB/c mice peritoneal cells using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) at the concentrations of 6.3 to 50 µg/ml. In the haemolysis assays, none of the plant extracts had a significant haemolytic activity with the saponin-enriched extract having the maximum haemolytic activity of 12.2% for a concentration of 5 mg/ml. In the MTT cell viability assay, none of the 11 plant extracts had significant cytotoxicity. The water extract, however, had significant (p < 0.01) proliferative activity towards the murine immune cells at all concentrations. P. curatellifolia leaf extracts were, therefore, not toxic to both erythrocytes and immune cells, and the water extract may have immunostimulatory effects. It is concluded that P. curatellifolia leaf extracts are not toxic in vitro and, therefore, our results support the use of the plant for ethnomedicinal use.

12.
Int J Microbiol ; 2020: 8885338, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061985

RESUMO

Increasing cases of multidrug-resistant pathogens have evolved into a global health crisis. ESKAPE group of bacteria are associated with antibiotic resistance, and infections caused by these pathogens result in high mortality and morbidity. However, de novo synthesis of antibiotics is expensive and time-consuming since the development of a new drug has to go through several clinical trials. Repurposing of old drugs for the treatment of antimicrobial resistant pathogens has been explored as an alternative strategy in the field of antimicrobial drug discovery. Ten non-antimicrobial compounds were screened for antibacterial activity on two ESKAPE organisms, Staphylococcus aureus and Pseudomonas aeruginosa. The drugs used in this study were amodiaquine an antimalarial drug, probenecid used to prevent gout, ibuprofen a painkiller, 2-amino-5-chlorobenzaxazole used as a tool for assessing hepatic cytochrome P450 activity in rodents, ellargic acid an antioxidant, quercetin an antioxidant and anti-inflammatory drug, N-N diacryloylpiperazine used to crosslink polyacrylamide gel in 2D-protein electrophoresis, epicatechin an antioxidant and antiviral drug, curcumin an anticancer drug, and quinine an antimalarial drug. Antibacterial susceptibility tests were carried out for the 10 compounds. Curcumin exhibited the most potent antimicrobial activity against both bacteria, with MICs of 50 µg/ml and 100 µg/ml for P. aeruginosa and S. aureus, respectively. Ellargic acid was found to have an MIC of 100 µg/ml against S. aureus. Curcumin caused protein and nucleic acid leakage from the bacterial cell membrane in both bacterial species. When curcumin was combined with ciprofloxacin, it was found to enhance the antibacterial effects of ciprofloxacin. The combination with ciprofloxacin reduced the MIC for ciprofloxacin from 0.5 µg/ml to 0.0625 µg/ml on P. aeruginosa and 0.25 µg/ml to 0.0625 µg/ml on S. aureus. The results obtained show that curcumin has antibacterial activity against S. aureus and P. aeruginosa and may enhance the antibacterial activity of ciprofloxacin.

13.
Biomed Res Int ; 2020: 1263702, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083448

RESUMO

Plants are a source of over a quarter of the prescription drugs currently in use worldwide. Zimbabwe has a rich plant biodiversity with only a limited number reported for the treatment of cancer. The leaf extracts of Dolichos kilimandscharicus were selected for the screening of their antiproliferative efficacy and cytotoxicity effects. This plant has increasingly been used by local folk as a treatment for cancer or cancer-related symptoms though its bioactivity has not been scientifically determined. This investigation also sought to identify constituent compounds in the crude extract preparations responsible for their antiproliferative efficacy. The antiproliferative effects of six-leaf extracts on Jurkat-T in vitro were investigated using the Trypan blue exclusion assay. The extracts were tested with increasing concentration, using chlorambucil as a standard anticancer drug. Cytotoxicity of extracts was determined against RAW 264.7 cells using a colorimetric tetrazolium-based assay. In additionthe ability of the extracts to induce apoptosis was determined for the most potent leaf extracts. The order of potency of the leaf extracts of D. kilimandscharicus against Jurkat-T cell line was found to be MeOH < Ethyl Acetate < DCM: MeOH < EtOH with IC50s of 33.56, 30.44, 22.93, and 21.59 µg/mL, respectively. Furthermore, the most potent extracts exhibited very low cytotoxicity against all the tested cells. D. kilimandscharicus leaf extracts induced apoptosis in the Jurkat-T cells as was shown by DNA fragmentation. UPLC-MS analysis of crude extracts led to the identification of 23 compounds from the ethanol extract and these may be responsible for the observed antiproliferative effects. Rutin, quercetin, luteolin, apigenin, hispidulin, kaempferol derivatives, as well as caffeoylquinic acid are some of the compounds identified in the extracts. The results of this study showed that the ethanol and ethyl acetate leaf extracts of D. kilimandscharicus have antiproliferative activity against Jurkat-T cells and may act by inducing apoptosis.. The current findings offer supporting evidence for the use of these plant species in the treatment of cancer in ethnomedicinal practices.


Assuntos
Dolichos/química , Fabaceae/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxinas/farmacologia , Fragmentação do DNA/efeitos dos fármacos , Humanos , Células Jurkat , Camundongos , Células RAW 264.7 , Linfócitos T
14.
Biochem Res Int ; 2020: 6926320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399301

RESUMO

Staphylococcus aureus is among the common nosocomial pathogens. Antibiotics have been used to treat S. aureus infections. However, there has been increased mortality associated with drug-resistant strains of S. aureus. Extracellular proteases have been implicated to be responsible for the transition of S. aureus from an adhesive pathogen to an invasive pathogen. The development of resistant strains has necessitated the search for new sources of drugs. Plants have been traditionally used as sources of therapeutic molecules. The objective of this study was to determine the effect of tormentic acid and the extracts from Callistemon citrinus on the production of extracellular proteases by S. aureus. The broth microdilution antibacterial susceptibility assay was used to determine the antibacterial effects of tormentic acid and the extracts on S. aureus. Both extracts showed a minimum inhibitory concentration (MIC) value of 50 µg/ml. The water : ethanol (50 : 50) and the dichloromethane : methanol (50 : 50) extracts were found to be bactericidal against S. aureus at a concentration of 100 µg/ml and 50 µg/ml, respectively. The effect of tormentic acid and extracts on extracellular protease production was investigated using the protease assay. A zone of proteolytic activity (Pr) was measured as the ratio of the diameter of the colony to the total diameter of colony plus zone of hydrolysis. The extracts reduced the production of extracellular proteases, while tormentic acid completely inhibited the production of extracellular proteases by S. aureus. The Pr value for tormentic acid was found to be 1. The Pr values of the dichloromethane : methanol extract and the water : ethanol extract were 0.92 and 0.84, respectively. In conclusion, tormentic acid was shown to inhibit extracellular protease production; therefore, there is need to explore its use in antivirulence therapy to combat S. aureus infections.

15.
BMC Complement Altern Med ; 19(1): 315, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744500

RESUMO

BACKGROUND: Pseudomonas aeruginosa has become a main cause of Gram-negative infection, particularly in patients with compromised immunity. High rates of resistance to antibiotics are associated with nosocomial infections caused by P. aeruginosa strains. The search for novel antimicrobials has been necessitated by the emergence of antimicrobial resistance in some bacteria Plant-based antimicrobials has great potential to combat microbial infections using a variety of mechanisms. Triumfetta welwitschii plant roots are traditionally used to treat symptoms of diarrhoea and fever, suggesting that it possess antimicrobial and immunomodulatory effects. Since research investigating antimicrobial properties of the roots of Triumfetta welwitschii has been explored, there is need to investigate the antimicrobial activity of its leaf extracts in order to probe their prospective use as new antimicrobial agents that can be used to combat nosocomial infections. The objective of this study was to evaluate the antibacterial activities, the mode of action and cytotoxicity of T. welwitschii leaf extracts. METHOD: Extracts of T. welwitschii leaves were obtained using eight different solvents, the serial exhaustive extraction method and the cold maceration technique. In vitro antibacterial activity evaluation of the extracts was done on eight bacterial isolates using the broth microdilution method. The mode of action for the most potent extracts was investigated using the rhodamine 6G efflux assay and the propidium iodide-based membrane damage assay. Toxicity of the extracts was evaluated using the haemolytic and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assays. RESULTS: The results showed that acetone, ethanol and dichlorometane: methanol extracts had the most potent antibacterial activities against Pseudomonas aeruginosa (ATCC 27853). All three extracts caused membrane disruption of P. aeruginosa as shown by nucleic acid leakage. All three extracts were unable to inhibit efflux pumps. CONCLUSION: The presence of antibacterial activities and low toxicity shown by the extracts indicates that the plant may be a source of effective antibacterial against some bacterial infections caused by P. aeruginosa. The disruption of membrane integrity is one possible mode of action of antibacterial activity of the potent extracts.


Assuntos
Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Triumfetta/química , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/toxicidade , Eritrócitos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Folhas de Planta/química , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Ovinos
16.
BMC Complement Altern Med ; 19(1): 249, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492140

RESUMO

BACKGROUND: Bacteria have developed resistance to most of the current antibiotics. There is evidence suggesting that plant-derived compounds have a potential for interacting with biological processes. One of the plants commonly used in African ethnomedicine is Vernonia adoensis from the Asteraceae family. The leaves of the plant have been reported to have antimicrobial activity. Hence, the aim of this study was to isolate the bioactive compounds from the leaf extract and evaluate their antibacterial activity on Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. In addition, the effect of the isolated compound on biofilms of P. aeruginosa was determined. METHODS: Isolation of phytochemicals from the leaves of V. adoensis was done using column chromatography. Preparative TLC was used to further isolate mixed compounds in the fractions. Nuclear magnetic resonance spectroscopy and mass spectrometry was used to identify the isolated pure compounds. The broth microdilution assay was carried out to evaluate the antibacterial activity of the isolated compound on P. aeruginosa, S. aureus and K. pneumoniae. Crystal violet staining technique was used to evaluate the effect of the isolated compound on biofilms of P. aeruginosa. RESULTS: The compound isolated from V. adoensis was identified as chondrillasterol. Chondrillasterol exhibited 25, 38 and 65% inhibition of growth on S. aureus, K. pneumoniae and P. aeruginosa respectively. At 1.6 µg/mL chondrillasterol completely disrupted mature biofilm of P. aeruginosa while at 100 µg/mL the compound completely inhibited formation of biofilms of the bacteria. CONCLUSION: Chondrillasterol isolated from V. adoensis has antibacterial properties against S. aureus, K. pneumoniae and P. aeruginosa. The compound also has biofilm inhibition and disruption activity against P. aeruginosa biofilms. Thus, the active phytochemical could be a useful template for the development of new antimicrobial agents with both antibacterial and antibiofilm activity.


Assuntos
Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Esteroides/farmacologia , Vernonia/química , Antibacterianos/análise , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Biofilmes/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/análise , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Esteroides/análise
17.
OMICS ; 23(3): 152-166, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30883300

RESUMO

Coumarins such as warfarin are prescribed for prevention and treatment of thromboembolic disorders. Warfarin remains the most widely prescribed and an anticoagulant of choice in Africa. Warfarin use is, however, limited by interindividual variability in pharmacokinetics and a narrow therapeutic index. The difference in patients' pharmacodynamic responses to warfarin has been attributed to genetic variation in warfarin metabolism and molecular targets (e.g., CYP2C9 and VKORC1) and host-environment interactions. This expert review offers a synthesis of human genetics studies in Africans with respect to pharmacogenetics-informed warfarin dosing. We identify areas that need future research attention or could benefit from harnessing existing pharmacogenetics knowledge toward rational and optimal therapeutics with warfarin in African patients. A literature search was conducted until January 2019. A total of 343 articles were retrieved from nine African countries: Botswana, Ethiopia, Egypt, Ghana, Kenya, South Africa, Sudan, Tanzania, and Mozambique. We found 19 studies on genetics of warfarin treatment specifically among Africans. Genes examined included CYP2C9, VKORC1, CYP4F2, APOE, CALU, GGCX, and EPHX1. CYP2C9*2 and *3 alleles were highly frequent among Egyptians, while rare in other African populations. CYP2C9*5, *8, *9, and *11, and VKORC1 Asp36Tyr genetic variants explained warfarin variability in Africans better, compared to CYP2C9*2 and *3. In Africa, there is limited pharmacogenetics data on warfarin. Therefore, future research and funding commitments should be prioritized to ensure safe and effective use of warfarin in Africa. Lessons learned in Africa from the science of pharmacogenetics would inform rational therapeutics in hematology, cardiology, and surgical specialties worldwide.


Assuntos
Anticoagulantes/administração & dosagem , Varfarina/administração & dosagem , África , Relação Dose-Resposta a Droga , Frequência do Gene/genética , Genótipo , Humanos , Farmacogenética , Polimorfismo de Nucleotídeo Único/genética
18.
BMC Res Notes ; 10(1): 328, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747232

RESUMO

BACKGROUND: Chlorhexidine digluconate (CHG) is used as a disinfectant. The emergence of pathogens resistant to the biocide raises health concern. Information on specific efflux mechanisms utilised by bacteria to confer reduced susceptibility to the biocide, may be used to develop ways of preventing the efflux of the biocide from nosocomial pathogens resulting in higher disinfection activity. The aim of the study was to evaluate the role of ATP-binding cassette transporters on the transport of CHG in bacteria. METHODS: Clinical strains of Pseudomonas aeruginosa, Staphylococcus aureus and their respective laboratory strains ATCC 27853 and ATCC 9144 were used for susceptibility tests. The minimum inhibitory concentration (MIC) of CHG with or without an efflux pump inhibitor [reserpine or carbonyl cyanide m-chlorophenylhydrazone (CCCP)] was determined using the broth microdilution method. A spectrophotometric method to quantify the amount of chlorhexidine in a sample was developed, validated and used to quantify CHG within P. aeruginosa and S. aureus cells. RESULTS: In the presence of reserpine, the MIC of CHG against the clinical strains of P. aeruginosa and S. aureus decreased from 6.3 to 3.2 µg/ml but showed no change against both ATCC isolates. The MIC of CHG in the presence of CCCP for both strains of P. aeruginosa remained unchanged but showed a reduction for both isolates of S. aureus. The suitability of the spectrophotometric method developed for quantifying the amount of CHG accumulated in microbial cells was validated and used successfully to quantify CHG accumulated within bacterial cells. CONCLUSION: The spectrophotometric determination of CHG within microbial cells may be used to quantify CHG in microbial cells. Only the clinical strain of P. aeruginosa showed significant efflux of CHG suggesting the participation of efflux transporters in the pumping out of CHG from this isolate. The use of efflux pump inhibitors together with the biocide may be explored to preventing the efflux of the biocide from P. aeruginosa resulting in order to increase disinfection activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Anti-Infecciosos Locais/farmacologia , Clorexidina/análogos & derivados , Infecção Hospitalar/prevenção & controle , Inibidores da Síntese de Proteínas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Reserpina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Clorexidina/farmacologia , Testes de Sensibilidade Microbiana
19.
BMC Complement Altern Med ; 17(1): 285, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558683

RESUMO

BACKGROUND: Tuberculosis (TB) is a serious public health problem worldwide. Mycobacterium tuberculosis (M. tuberculosis) grows as drug tolerant pellicles. Agents that inhibit biofilm formation in M. tuberculosis have the potential to reduce the disease treatment period and improve the quality of tuberculosis chemotherapy. Parinari curatellifolia (P. curatellifolia) leaf extracts are claimed to treat symptoms similar to tuberculosis in ethnomedicinal practices. Mycobacterium smegmatis (M. smegmatis) is a surrogate organism used in antimycobacterial drug discovery assays. In this study, the effect of the leaf extracts of P. curatellifolia on M. smegmatis growth and biofilm formation was investigated in order to determine the basis of its use in traditional medicinal use. METHODS: Phytochemicals from P. curatellifolia leaves were prepared using a mixture of 50% dichloromethane (DCM): 50% methanol and by serial exhaustive extraction using different solvents of decreasing polarity. The solvents were used in the following order, hexane > dichloromethane > ethyl acetate > acetone >ethanol > methanol > water. The micro-broth dilution method was used as an antimycobacterial susceptibility test to screen for the extract that effectively inhibited M. smegmatis growth and biofilm formation. Biofilm quantification was performed by staining the biofilms with crystal violet and determining the amount of the stain using a spectrophotometer. In addition, the effects of combining the most active extract with kanamycin were also investigated. RESULTS: The minimum inhibitory concentrations (MIC) of the extracts were found to be 6.2 µg/ml for the acetone extract, 12.5 µg/ml for both the ethanol and the total extract and 50 µg/ml for both the methanol and ethyl acetate extracts. The ethanol extract, dichloromethane extract and water extract were the only extracts that effectively inhibited biofilm formation in M. smegmatis. Combining the ethanol extract with kanamycin enhanced the effect of the ethanol extract in terms of inhibition of biofilm formation. CONCLUSIONS: P. curatellifolia leaves contain phytochemicals that have the potential to be used both as antimycobacterial and anti-biofilm formation compounds.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antibacterianos/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/fisiologia , Mycobacterium tuberculosis/fisiologia , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química
20.
BMC Complement Altern Med ; 17(1): 124, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28228097

RESUMO

BACKGROUND: Current tuberculosis regimens have failed to combat the issue of drug resistance and ethno medicines may represent a possible source of antimycobacterial agents. Combretum species are well known in African traditional medicines and used for various ailments including pneumonia, venereal diseases like syphilis, mental problems, relief of sore throats and colds, fever, and chest coughs associated with tuberculosis. Alkaloids function as either hydrogen-acceptor or hydrogen-donor in hydrogen bonding critical for the interaction between targets thus, potentiating effects of curative agents on diseases. Alkaloid extracts from leaves of Combretum zeyheri, Combretum platypetalum, Combretum molle and Combretum apiculatum, were assessed for antimycobacterial activity to establish rationale for their use in traditional medicines for various ailments including pneumonia, relief of sore throats and colds, fever, and chest coughs associated with tuberculosis. METHODS: Alkaloids were extracted from the leaves of Combretum zeyheri, Combretum platypetalum, Combretum molle and Combretum apiculatum. The broth microdilution method was used for the screening of growth inhibitory activity. The standard drug rifampicin was used as the positive control. Alkaloid extracts from the most potent plant species, Combretum zeyheri were further investigated for time-kill dependency effects on drug transport in Mycobacterium smegmatis. RESULTS: Using the broth microdilution susceptibility method, C. zeyheri alkaloid extract, was found to have the most antimycobacterial effects with an MIC value of 125 µg/ml whilst MICs for C. molle and C. platypetalum were above 1000 µg/ml. An MBC value of 250 µg/ml was observed with alkaloid extracts from Combretum zeyheri whilst the remaining three Combretum species showed no bactericidal activity. It was also shown that C. zeyheri had potential efflux pump inhibitory activity. Determination of the time-kill kinetics of extracts from C. zeyheri showed not only a concentration-dependent activity but time-dependent bactericidal effect as well. CONCLUSIONS: Alkaloid extracts from the leaves of C. zeyheri have potential as a source of lead compounds that may be developed further into antimycobacterial compounds. The mechanism of action of may be due to inhibition of transport across the cell membrane. Further work needs to be done to isolate the active components in these extracts.


Assuntos
Alcaloides/farmacologia , Antibacterianos/farmacologia , Combretum/química , Mycobacterium smegmatis/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alcaloides/isolamento & purificação , Antibacterianos/isolamento & purificação , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/crescimento & desenvolvimento , Zimbábue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...