Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Sci Instrum ; 40: 142-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15133949

RESUMO

In this paper, we present the model study of capacitive micromachined ultrasonic transducers (CMUTs) fabricated by atomic layer deposition (ALD) technology, which uses a self-limiting binary reaction process to produce ultra-thin membranes. Advantages of ALD include precise control of membrane thickness, lower cost due to a reduction in the number of fabrication steps, the potential to use a large variety of materials, and increased reliability due to the enhanced surface quality of the membranes. These capabilities promise fabrication of transducers with superior operating characteristics. However, no study has yet documented sensitivity and power requirements for CMUTs created using ALD. We present here a first-order mechanical and equivalent circuit analysis along with a fabrication process to create and characterize CMUTs using ALD. Simulation results show that these systems have the potential for excellent sensitivity and decreased power requirements. Work to test the fabricated elements is currently underway.


Assuntos
Cristalização/métodos , Análise de Falha de Equipamento/métodos , Miniaturização/métodos , Modelos Teóricos , Nanotecnologia/métodos , Transdutores , Ultrassonografia/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Estudos de Viabilidade , Manufaturas , Nanotecnologia/instrumentação , Ultrassonografia/métodos
2.
J Acoust Soc Am ; 112(5 Pt 1): 1766-79, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12430791

RESUMO

Guided waves in a layered elastic plate of rectangular cross section (finite width and thickness) has been studied in this paper. A semianalytical finite element method in which the deformation of the cross section is modeled by two-dimensional finite elements and analytical representation of propagating waves along the length of the plate has been used. The method is applicable to arbitrary number of layers and general anisotropic material properties of each layer, and is similar to the stiffness method used earlier to study guided waves in a laminated composite plate of infinite width. Numerical results showing the effect of varying the width of the plate on the dispersion of guided waves are presented and are compared with those for an infinite plate. In addition, effect of thin anisotropic coating or interface layers on the guided waves is investigated.


Assuntos
Elasticidade , Modelos Teóricos , Ultrassom , Fatores de Tempo
3.
Artigo em Inglês | MEDLINE | ID: mdl-11800121

RESUMO

The elastic properties of many materials in sheet or plate form can be approximated with orthotropic symmetry. In many sheet material manufacturing industries (e.g., the paper industry), manufacturers desire knowledge of certain anisotropic elastic properties in the sheet for handling and quality issues. Ultrasonic wave propagation in plate materials forms a method to determine the anisotropic elastic properties in a nondestructive manner. This work explores exact and approximate analysis methods of ultrasonic guided wave propagation in thin layers, explicitly dealing with orthotropic symmetry and propagation off-axis with respect to the manufacturing direction. Recent advances in full-field ultrasonic imaging methods, based on dynamic holography, allow simultaneous measurement of the plate wave motion in all planar directions within a single image. Results from this laser ultrasonic imaging approach are presented that record the lowest anti-symmetric (flexural) mode wavefront in a single image without scanning. Specific numerical predictions for flexural wave propagation in two distinctly different types of paper are presented and compared with direct imaging measurements. Very good agreement is obtained for the lowest anti-symmetric plate mode using paper properties independently determined by a third party. Complete determination of the elastic modulus tensor for orthotropic layers requires measurement of other modes in addition to the lowest anti-symmetric. Theoretical predictions are presented for other guided wave modes [extensional (S), flexural (A), and shear-horizontal (SH)] in orthotropic plates with emphasis on propagation in all planar directions. It is shown that there are significant changes in the dispersion characterization of these modes at certain frequencies (including off-axis mode coupling) that can be exploited to measure additional in-plane elastic moduli of thin layers. At present, the sensitivity of the imaging measurement approach limits experimental investigation to relatively large amplitudes easily produced by flexural wave motion (> 0.1 nm). Extension of the measurement range and application to other plate wave modes are in progress and shall be reported in future work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...