Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38790304

RESUMO

The repair of critical-sized calvarial defects is a challenging problem for orthopedic surgery. One of the promising strategies of bone bioengineering to enhance the efficacy of large bone defect regeneration is the combined delivery of stem cells with osteoinductive factors within polymer carriers. The purpose of the research was to study the regenerative effects of heparin-conjugated fibrin (HCF) hydrogel containing bone morphogenetic protein 2 (BMP-2) and adipose-derived pericytes (ADPs) in a rat critical-sized calvarial defect model. In vitro analysis revealed that the HCF hydrogel was able to control the BMP-2 release and induce alkaline phosphatase (ALP) activity in neonatal rat osteoblasts. In addition, it was found that eluted BMP-2 significantly induced the osteogenic differentiation of ADPs. It was characterized by the increased ALP activity, osteocalcin expression and calcium deposits in ADPs. In vivo studies have shown that both HCF hydrogel with BMP-2 and HCF hydrogel with pericytes are able to significantly increase the regeneration of critical-sized calvarial defects in comparison with the control group. Nevertheless, the greatest regenerative effect was found after the co-delivery of ADPs and BMP-2 into a critical-sized calvarial defect. Thus, our findings suggest that the combined delivery of ADPs and BMP-2 in HCF hydrogel holds promise to be applied as an alternative biopolymer for the critical-sized bone defect restoration.

2.
Cent Asian J Glob Health ; 2(Suppl): 97, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-29805856

RESUMO

INTRODUCTION: The purpose of this study was to investigate whether intra-articular injection of synovium-derived mesenchymal stem cells (SD MSCs) with low molecular weight hyaluronic acid (HA) could promote regeneration of massive cartilage in rabbits. MATERIAL AND METHODS: The SD MSCs were harvested from the knees of 10 Flemish giant rabbits, expanded in culture, and characterized. A reproducible 4-mm cylindrical defect was created in the intercondylar groove area using a kit for the mosaic chondroplasty of femoral condyle COR (De Puy, Mitek). The defect was made within the cartilage layer without destruction of subchondral bone. Two weeks after the cartilage defect, SD MSCs (2 × 106 cell/0.15 ml) were suspended in 0.5% low molecular weight HA (0.15 ml) and injected into the left knee, and HA solution (0.30 ml) alone was placed into the right knee. Cartilage regeneration in the experimental and control groups were evaluated by macroscopically and histologically at 10, 30, and 60 days. RESULTS: On day 10, after intra-articular injection of SD MSCs, we observed an early process of cartilage regeneration in the defect area. Histological studies revealed that cartilage defect was covered by a thin layer of spindle-shaped undifferentiated cells and proliferated chodroblasts. In contrast, an injection of HA did not induce reparation of cartilage in the defect area. At 30 days, macroscopic observation showed that the size of cartilage defect after SD MSC injection was significantly smaller than after HA injection. Histological score was also better in the MSC-treated intercondylar defect. At 60 days after MSC treatment, cartilage defect was nearly nonexistent and looked similar to an intact cartilage. CONCLUSION: Thus, intra-articular injection of SD MSCs can adhere to the defect in the intercondylar area, and promote cartilage regeneration in rabbits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...