Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(18): 186804, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144884

RESUMO

We show experimentally that a dc biased Josephson junction in series with a high-enough-impedance microwave resonator emits antibunched photons. Our resonator is made of a simple microfabricated spiral coil that resonates at 4.4 GHz and reaches a 1.97 kΩ characteristic impedance. The second order correlation function of the power leaking out of the resonator drops down to 0.3 at zero delay, which demonstrates the antibunching of the photons emitted by the circuit at a rate of 6×10^{7} photons per second. Results are found in quantitative agreement with our theoretical predictions. This simple scheme could offer an efficient and bright single-photon source in the microwave domain.

2.
Phys Rev Lett ; 119(13): 137001, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341699

RESUMO

We show that a properly dc-biased Josephson junction in series with two microwave resonators of different frequencies emits photon pairs in the resonators. By measuring auto- and intercorrelations of the power leaking out of the resonators, we demonstrate two-mode amplitude squeezing below the classical limit. This nonclassical microwave light emission is found to be in quantitative agreement with our theoretical predictions, up to an emission rate of 2 billion photon pairs per second.

3.
Nature ; 411(6835): 280-3, 2001 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-11357124

RESUMO

Superfluids and superconductors are the only states of condensed matter that can be described by a single wavefunction, with a coherent quantum phase Phi. The mass flow in a superfluid can be described by classical hydrodynamics for small flow velocity, but above a critical velocity, quantized vortices are created and the classical picture breaks down. This can be observed for a superfluid flowing through a microscopic aperture when the mass flow is measured as a function of the phase difference across the aperture; the curve resembles a hysteretic sawtooth where each jump corresponds to the creation of a vortex. When the aperture is made small enough, the system can enter the so-called 'ideal' Josephson regime, where the superfluid mass flow becomes a continuous function of the phase difference. This regime has been detected in superfluid 3He, but was hitherto believed to be unobservable, owing to fluctuations, in 4He. Here we report the observation of the ideal Josephson effect in 4He. We study the flow of 4He through an array of micro-apertures and observe a transition to the ideal Josephson regime as the temperature is increased towards the superfluid transition temperature, Tlambda.

4.
Phys Rev Lett ; 74(25): 5056-5059, 1995 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-10058672
5.
Phys Rev Lett ; 68(9): 1327-1330, 1992 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-10046138
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...