Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(26): 23579-23586, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426242

RESUMO

Enhancing the signal-to-noise ratio in avalanche photodiodes by utilizing impact ionization gain requires materials exhibiting low excess noise factors. Amorphous selenium (a-Se) as a wide bandgap at ∼2.1 eV, a solid-state avalanche layer, demonstrates single-carrier hole impact ionization gain and manifests ultralow thermal generation rates. A comprehensive study of the history dependent and non-Markovian nature of hot hole transport in a-Se was modeled using a Monte Carlo (MC) random walk of single hole free flights, interrupted by instantaneous phonon, disorder, hole-dipole, and impact-ionization scattering interactions. The hole excess noise factors were simulated for 0.1-15 µm a-Se thin-films as a function of mean avalanche gain. The hole excess noise factors in a-Se decreases with an increase in electric field, impact ionization gain, and device thickness. The history dependent nature of branching of holes is explained using a Gaussian avalanche threshold distance distribution and the dead space distance, which increases determinism in the stochastic impact ionization process. An ultralow non-Markovian excess noise factor of ∼1 was simulated for 100 nm a-Se thin films corresponding to avalanche gains of 1000. Future detector designs can utilize the nonlocal/non-Markovian nature of the hole avalanche in a-Se, to enable a true solid-state photomultiplier with noiseless gain.

2.
ACS Omega ; 6(7): 4574-4581, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33644565

RESUMO

Amorphous selenium lacks the structural long-range order present in crystalline solids. However, the stark similarity in the short-range order that exists across its allotropic forms, augmented with a shift to non-activated extended-state transport at high electric fields beyond the onset of impact ionization, allowed us to perform this theoretical study, which describes the high-field extended-state hole transport processes in amorphous selenium by modeling the band-transport lattice theory of its crystalline counterpart trigonal selenium. An in-house bulk Monte Carlo algorithm is employed to solve the semiclassical Boltzmann transport equation, providing microscopic insight to carrier trajectories and relaxation dynamics of these non-equilibrium "hot" holes in extended states. The extended-state hole-phonon interaction and the lack of long-range order in the amorphous phase is modeled as individual scattering processes, namely acoustic, polar and non-polar optical phonons, disorder and dipole scattering, and impact ionization gain, which is modeled using a power law Keldysh fit. We have used a non-parabolic approximation to the density functional theory calculated valence band density of states. To validate our transport model, we calculate and compare our time of flight mobility, impact ionization gain, ensemble energy and velocity, and high field hole energy distributions with experimental findings. We reached the conclusion that hot holes drift around in the direction perpendicular to the applied electric field and are subject to frequent acceleration/deceleration caused by the presence of high phonon, disorder, and impurity scattering. This leads to a certain determinism in the otherwise stochastic impact ionization phenomenon, as usually seen in elemental crystalline solids.

3.
ACS Appl Electron Mater ; 3(8): 3538-3546, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35600494

RESUMO

Amorphous selenium (a-Se) with its single-carrier and non-Markovian, hole impact ionization process can revolutionize low-light detection and emerge to be a solid-state replacement to the vacuum photomultiplier tube (PMT). Although a-Se-based solid-state avalanche detectors can ideally provide gains comparable to PMTs, their development has been severely limited by the irreversible breakdown of inefficient hole blocking layers (HBLs). Thus, understanding of the transport characteristics and ways to control electrical hot spots and, thereby, the breakdown voltage is key to improving the performance of avalanche a-Se devices. Simulations using Atlas, SILVACO, were employed to identify relevant conduction mechanisms in a-Se-based detectors: space-charge-limited current, bulk thermal generation, Schottky emission, Poole-Frenkel activated mobility, and hopping conduction. Simulation parameters were obtained from experimental data and first-principle calculations. The theoretical models were validated by comparing them with experimental steady-state dark current densities in avalanche and nonavalanche a-Se detectors. To maintain bulk thermal generation-limited dark current levels in a-Se detectors, a high-permittivity noninsulating material is required to substantially decrease the electric field at the electrode/hole blocking layer interface, thus preventing injection from the high-voltage electrode. This, in turn, prevents Joule heating from crystallizing the a-Se layer, consequently avoiding early dielectric breakdown of the device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...