Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 307: 116263, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36781056

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal plants such as Basella alba (Family: Basellaceae), Tribulus terrestris (Family: Zygophyllaceae), Asparagus racemosus (Family: Asparagaceae) and Mucuna pruriens (Family: Fabaceae) are mentioned in Indian traditional system of medicine Ayurveda to possess androgenic activity and increase male virility. The plants have been reported to improve testosterone level and sperm production in experimental male rodents as well. AIM OF THE STUDY: Male Nile tilapias grow more quickly than females and hence are preferred for monosex Nile tilapia culture. Ethanol extracts of B. alba leaves (EB) and T. terrestris seeds (ET), and methanol extract of A. racemosus roots (MA) and M. pruriens seeds (MM) were found effective to induce masculinization in Nile tilapia. The present study intends to evaluate the anti-aromatase activity of EB, ET, MA and MM, to identify the androgenic bioactive compounds in the extracts, and to determine their pharmacokinetics. The study may validate the use of those plant extracts and their major bioactive phytoconstituents in the field of aquaculture and pharmaceuticals. MATERIALS AND METHODS: The four crude plant extracts were first fractioned through column and thin layer chromatography (TLC). Three days old Nile tilapia juveniles (mean weight 0.025 ± 0.009g; mean length 12.50 ± 0.12 mm; n = 50 fish/replicate, 3 replicates/treatment) were then fed diets fortified with the obtained fractions for 30 days. After 30 days, fish were sacrificed and gonad aromatase mRNA expression, and 11-ketotestosterone (11-KT) and estradiol (E2) levels were measured. Fractions yielding the highest male percentage for each plant were subject to gas chromatography-mass spectrometry (GC-MS) analysis. The in silico docking and SwissADME study were conducted with the components showing higher peak percentage in chromatogram. RESULTS: After column chromatography and TLC analysis, EB, ET, MM and MA yielded 6 (EB1 - EB6), 8 (ET1- ET8), 14 (MM1-MM14) and 5 (MA1- MA5) fractions, respectively. Fish fed EB2, ET2, MA2 and MM13 fraction fortified diets showed significantly (p < 0.05) higher male percentage (92.32%-98.39%) compared to other treatment groups. EB2, ET2, MA2 and MM13 fed fish showed significantly (p < 0.05) higher 11-KT level compared to control male (+247.52 - +397.76%) and lower E2 level compared to control female (-95.92% to -90.65%). Aromatase mRNA expression was significantly (p < 0.05) down-regulated by all these four fractions (-1.32 to -5.65 fold) with respect to control female. GC-MS analysis revealed the presence of 1-Octadecene (OD) in EB2, Phenol, 2,4-bis(1,1-dimethylethyl) (PD) in ET2 and MA2, 9,12-Octadecadienoic acid (Z,Z)- (ODDA) in MM13. In silico molecular docking indicated that PD is more effective than ODDA and OD to inhibit aromatase. In addition, PD showed better pharmacokinetics and more drug-likeness compared to OD and ODDA in SwissADME analysis. CONCLUSION: The present results indicate that ET and MA are more potent to produce all-male tilapia by means of aromatase inhibition. PD can be an ideal compound to achieve masculinization in Nile tilapia through dietary administration, but further investigation is required.


Assuntos
Ciclídeos , Plantas Medicinais , Feminino , Animais , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , RNA Mensageiro , Sementes
2.
Ecotoxicol Environ Saf ; 163: 37-46, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031943

RESUMO

Variation in pH (acidification) and salinity conditions have severe impact at different levels of biological organization in fish. Present study focused to assess the effects of acidification and salinity changes on physiological stress responses at three different levels of function: i) hormonal and oxidative response, ii) osmoregulation and iii) reproduction, in order to identify relevant biomarkers. Second objective of the study was to evaluate the efficacy of plant (Mucuna pruriens) extract for alleviating pH and salinity related stress. Guppies (Poecilia reticulata) were exposed to different pH (6.0, 5.5, 5.0) and salinity (1.5, 3.0, 4.5 ppt) for 7, 14 and 21 days. Following exposure to stress for respective duration, fish were fed diet containing methanol extract of Mucuna seeds (dose 0.80 gm/kg feed) for 7, 14 and 21 days to measure their possible recovery response. Stress hormone (cortisol), hepatic oxidative stress parameters [superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GRd), glutathione peroxidise (GPx), glutathione S-transferase (GST), malondialdehyde (MDA), glutathione (GSH)], gill osmoregulatory response (Na+-K+ATPase activity), sex steroid profiles and mating behaviours (gonopodial thrust and gestation period) were estimated. Cortisol and MDA levels increased with dose and duration of acid and salinity stress, and cortisol levels were higher in males than in females. Effect on Na+-K+ATPase activity was more intense by salinity stress rather than pH induced stress. Both acid and salinity stress reduced sex steroid levels, and mating response was highly affected by both stresses in a dose- and duration-dependent manner. Mucuna treatment reduced stress-induced alteration of cortisol, MDA, Na+-K+ATPase activity and reproductive parameters. Dietary administration of Mucuna seed extract decreased the intensity of environmental stressors at all three functional levels. Mucuna treatment was more effective against salinity stress than acid stress. Thus, cortisol, oxidative stress marker MDA and Na+-K+ATPase could be effective indicators for acid and salinity stress in wild and domestic fish populations. Dietary administration of Mucuna extract may limit the detrimental effects of acidification and salinity variations that are the inevitable outcomes expected under global climate change conditions.


Assuntos
Mucuna , Pressão Osmótica , Extratos Vegetais/farmacologia , Poecilia/fisiologia , Salinidade , Estresse Fisiológico/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Feminino , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Hidrocortisona/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poecilia/metabolismo , Sementes , Comportamento Sexual Animal/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase/metabolismo
3.
J Toxicol Sci ; 42(6): 731-740, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29142172

RESUMO

Fish are exposed to different heavy metals that may induce numerous physiological changes. In the present study, we examined the redox state in response to a severe stress resulting from two heavy metals (Zinc and Lead) contamination in carp Cirrhinus cirrhosus. Fish were exposed to 1/10th of LC50 of the respective metals [zinc chloride (2.72 mg/L) and lead acetate (2.53 mg/L)] for 30 days and allowed to recover for another 30 days without any metal exposure. Concentration of metals, different enzymatic and non-enzymatic antioxidant agents and expression levels of heat shock protein (HSP) 70 and 90 were measured in the liver and the kidney of fish. The lipid peroxide levels in fish tissues gradually increased with duration of treatment for both metals. After 15 days of treatment, glutathione (GSH) levels had increased, but decreased as the treatment continued for 30 days and returned to basal levels after a 30-day recovery period. Activities of all the anti-oxidant enzymes, except glutathione peroxidase, in stressed fish were significantly increased compared to those in the control at 15 days and continued till the 30th day of treatment, showing a tendency to return to basal levels after the recovery period. Expression levels of HSP70 and HSP90 gradually increased after zinc and lead treatment, respectively. The expression of HSP was higher in the liver. The results suggest that different heavy metals may have differential effects on the redox state and induction of oxidative stress in carp, in vivo.


Assuntos
Carpas/metabolismo , Cloretos/toxicidade , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Compostos Organometálicos/toxicidade , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos de Zinco/toxicidade , Animais , Feminino , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Índia , Rim/metabolismo , Peróxidos Lipídicos/metabolismo , Fígado/metabolismo , Masculino , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...