Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mem Cognit ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814385

RESUMO

Early in life and without special training, human beings discern resemblance between abstract visual stimuli, such as drawings, and the real-world objects they represent. We used this capacity for visual abstraction as a tool for evaluating deep neural networks (DNNs) as models of human visual perception. Contrasting five contemporary DNNs, we evaluated how well each explains human similarity judgments among line drawings of recognizable and novel objects. For object sketches, human judgments were dominated by semantic category information; DNN representations contributed little additional information. In contrast, such features explained significant unique variance perceived similarity of abstract drawings. In both cases, a vision transformer trained to blend representations of images and their natural language descriptions showed the greatest ability to explain human perceptual similarity-an observation consistent with contemporary views of semantic representation and processing in the human mind and brain. Together, the results suggest that the building blocks of visual similarity may arise within systems that learn to use visual information, not for specific classification, but in service of generating semantic representations of objects.

2.
IEEE Trans Vis Comput Graph ; 28(1): 697-706, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34587028

RESUMO

People's associations between colors and concepts influence their ability to interpret the meanings of colors in information visualizations. Previous work has suggested such effects are limited to concepts that have strong, specific associations with colors. However, although a concept may not be strongly associated with any colors, its mapping can be disambiguated in the context of other concepts in an encoding system. We articulate this view in semantic discriminability theory, a general framework for understanding conditions determining when people can infer meaning from perceptual features. Semantic discriminability is the degree to which observers can infer a unique mapping between visual features and concepts. Semantic discriminability theory posits that the capacity for semantic discriminability for a set of concepts is constrained by the difference between the feature-concept association distributions across the concepts in the set. We define formal properties of this theory and test its implications in two experiments. The results show that the capacity to produce semantically discriminable colors for sets of concepts was indeed constrained by the statistical distance between color-concept association distributions (Experiment 1). Moreover, people could interpret meanings of colors in bar graphs insofar as the colors were semantically discriminable, even for concepts previously considered "non-colorable" (Experiment 2). The results suggest that colors are more robust for visual communication than previously thought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...