Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Oncol ; 41(5): 107, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580762

RESUMO

Diospyros peregrina is a dioecious plant which is native to India. It belongs to the family of Ebenaceae and is extensively used to treat various ailments, such as leucorrhoea and other uterine-related problems. Though few studies have been on D. peregrina for their anti-tumour response, little is known. Therefore, this intrigued us to understand its immunomodulator capabilities on various types of cancer extensively. Our primary focus is on NSCLC (Non-Small Cell Lung Cancer), which is ranked as the second largest form of cancer in the world, and the treatments demand non-invasive agents to target NSCLC effectively. In an objective to generate an efficient Lung Cancer Associated Antigen (LCA) specific anti-tumour immune response, LCA was presented using dendritic cells (DCs) in the presence of D. peregrina fruit preparation (DFP). Moreover, we also investigated DFP's role in the differentiation of T-helper (TH) cells. Therefore, this study aimed at better LCA presentation mediated by DFP by activating the LCA pulsed DCs and T helper cell differentiation for better immune response. DCs were pulsed with LCA for tumour antigen presentation in vitro, with and without DFP. Differentially pulsed DCs were irradiated to co-culture with autologous and allogeneic lymphocytes. Extracellular supernatants were collected for the estimation of cytokine levels by ELISA. LDH release assay was performed to test Cytotoxic T lymphocytes (CTLs) mediated lung tumour cell cytotoxicity. Thus, DFP may be a potential vaccine to generate anti-LCA immune responses to restrict NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Diospyros , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Apresentação de Antígeno , Frutas , Células Dendríticas , Linfócitos T Citotóxicos , Diferenciação Celular
2.
Pathol Res Pract ; 253: 155004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086291

RESUMO

BACKGROUND: NSCLC is one of the leading causes of death and is often diagnosed at late stages with no alternative therapeutic approach. DCs are professional antigen-presenting cells and DC-based immunotherapy has been under the spotlight for its anti-cancer properties. Epigenetic modifications including DNA methylation and histone modification in DCs play a crucial role in regulating their functions such as maturation and activation,innate immune responses, T cell priming, antigen presentation, and cytokine production. In the current study, we investigated the anti-cancer properties of Doxorubicin at a noncytotoxic concentration that could be extrapolated as an epigenetic regulator for DC maturation to elicit anti-tumor activity. METHODOLOGIES: PBMCs from normal and NSCLC blood samples were isolated and treated with growth factors. DCs were matured with low dose Doxorubicin and the DC maturation markers were checked by using flow-cytometry. Further, ELISA was performed and low dose Doxorubicin-induced DCs were pulsed with LCA (Lung Cancer Antigen) and primed with CD4 +T helper (Th) cells for cytotoxicity assessment. Further, epigenetic markers of T: DC conjugation were immunofluorescently visualized under a microscope. ChIP-qPCR and Invitro assays such as histone methylation, DNA methylation, and m6A methylation were performed to study the epigenetic changes under low dose Dox treatment. IL-12 neutralization assay was performed to check for the IL-12 dependency of DCs and their effect under Dox at low dose treatment. This was further followed by a Western Blotting analysis for histone and non-histone proteins. RESULTS: Low dose Doxorubicin induces epigenetic changes in DCs to elicit an anti-tumor response in NSCLC through the generation of CTLs with a concomitant increase in the extracellular secretions of anti-inflammatory cytokines. We also found that low dosage of Doxorubicin matured DCs when pulsed with LCA and primed with CD4 +T helper cells, secrete IFN-γ which is important in orchestrating adaptive immunity by activating CD8 + cytotoxic T-lymphocytes. Also, the secretions of IL-12 help us infer that protective immunity is also induced via Th1 response which triggered selectively the translocation of PKCθ to immunological synapse in between DC and Th. Further, methylation and acetylation markers H3K4me3 and H3K14Ac respectively upregulated whereas levels of STAT5, NFkB, NOTCH1, and DNAPKcs were downregulated. DNA and RNA methylation assays then lead to confirmations about the epigenetic changes caused by low dose Dox treatment. DNA methylation was reduced which resulted in the activation of tumor suppressor gene p53 and Th1-associated transcription factor TBX21. On the other hand, both absolute and relative RNA methylation quantification increased in the presence of Dox at a low dose. CONCLUSION: From this study, we understand that non-cytotoxic concentration of Doxorubicin increases the Ag-presenting ability of DCs via an IL-12-dependent mechanism and causes epigenetic modifications in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Epigênese Genética , Células Dendríticas , Citocinas/metabolismo , Interleucina-12/metabolismo , Ativação Linfocitária , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo
3.
Med Oncol ; 41(1): 28, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38146020

RESUMO

Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer which is the deadliest type of cancer for both men and women. Previous studies already showed that cell-intrinsic loss of WASp causes B cell tolerance and WASp deficiency in T helper (TH) cells is linked to negative effects on cytokine gene transcription necessary for TH1 differentiation. In the current study, we investigated the molecular mechanisms involved in WASp-mediated epigenetic regulation of B cell differentiation during NSCLC. Our ChIP-qPCR data suggest the less percentage enrichment of the B cell differentiating factors (Ikaros, Pax5, PU.1, BATF) and WASp across the WAS gene in the B cells of NSCLC patients in comparison with normal healthy donors and overexpression of WASp showed the reverse effects. WASp-depleted B cells while co-culturing with respective PBMCs isolated from normal healthy donors and NSCLC patients, we observed upregulation of TH2-, TH17-, and Treg-specific cytokines (IL4, ILI7A, IL10) & transcription factors (GATA3, RORC, FOXP3) and downregulation of TH1-specific cytokine (IFNγ) & transcription factor (TBX21). Our study showed that the overexpression of WASp resulted into upregulation of B cell differentiating factors, tumor suppressor protein (p53), histone methylation marker (H3K4me3) with concomitant downregulation of tumor-promoting factors (Notch 1, ß-Catenin, DNAPKcs) and histone deacetylation marker (HDAC2) and increase in percentage cytotoxicity of NSCLC-specific cells (A549). Successful overexpression of WASp not only helps in epigenetic regulation of B cell differentiation but also supports tumor suppression in NSCLC. Thus, WASp can be targeted for therapeutic intervention of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteína da Síndrome de Wiskott-Aldrich , Feminino , Humanos , Masculino , Carcinoma Pulmonar de Células não Pequenas/genética , Diferenciação Celular/genética , Citocinas/metabolismo , Epigênese Genética , Histonas/metabolismo , Neoplasias Pulmonares/genética , Fatores de Transcrição/genética , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Linfócitos B/metabolismo
4.
Curr Top Med Chem ; 23(30): 2973-2986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937579

RESUMO

Cancer is one of the leading causes of death, and numerous methods have been tested and used to figure out an optimum way of treatment. Besides targeted therapy, immunotherapy has proven to be effective by controlling certain immune cells. Traditional cancer therapy is met with the consequences of adverse side effects that have been a major issue for treatment; hence, a leap towards naturally occurring immunomodulators was taken to develop safer methods of treatment. One of the major immune cells responsible for the growth of tumors is regulatory T cells (Tregs). To maintain immunological homeostasis, Treg dampens abnormal immune responses to self and non-self-antigens. The transcription factor FoxP3 is responsible for their lineage specification and takes part in the production of immunosuppressive cytokines like IL10, IL35, and TGFb. This helps cancer cells to proliferate without the restriction of different immune cells like CD8+T cells, dendritic cells, monocytes/macrophages, B cells, and natural killer cells. Hence, targeting Tregs to provide unhindered immunosurveillance has proven to be a breakthrough in cancer immunotherapy. This review mainly focuses on some common naturally occurring immunomodulators derived from plant products that have earned their place as immunotherapeutic agents, along with some of their ability to suppress Tregs that can be used as an effective way to treat cancer.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/patologia , Neoplasias/tratamento farmacológico , Imunoterapia , Citocinas , Fatores Imunológicos
5.
Curr Res Immunol ; 4: 100068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692091

RESUMO

The immune system has a variety of potential effects on a tumor microenvironment and the course of chemotherapy may vary according to that. Anticancer treatments can encourage the release of unwanted signals from senescent tumor cells or the removal of immune-suppressive cells, which can lead to immune system activation. Hence, by inducing an immunological response and conversely making cancer cells more vulnerable to immune attack, chemotherapeutic agents can destroy cancer cells. Furthermore, chemotherapy can activate anticancer immune effectors directly or indirectly by thwarting immunosuppressive pathways. Therefore, in this review, we discuss how chemotherapeutic agents take part in immunomodulation and the molecular mechanisms underlying them. We also focus on the importance of carefully addressing the conflicting effects of chemotherapy on immune responses when developing successful combination treatments based on chemotherapy and immune modulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...