Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Sci ; 332: 111702, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37030329

RESUMO

Trichoderma virens is a plant beneficial fungus well-known for its biocontrol, herbicidal and growth promotion activity. Earlier, we identified HAS (HA-synthase, a terpene cyclase) and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) to be involved in the production of multiple non-volatiles and non-volatile+volatile metabolites, respectively. The present study delineates the function of HAS and GAPDH in regulating herbicidal activity, using the model plant Arabidopsis thaliana. Under axenic conditions, rosette-biomass of seedlings co-cultivated with ΔHAS (HASR) and ΔGAPDH (GAPDHR) was higher than WT-Trichoderma (WTR) as well as non-colonized control (NoTR), even though the root colonization ability was reduced. However, HASR biomass was still higher than those of GAPDHR, indicating that blocking volatiles will not provide any additional contribution over non-volatile metabolites for Trichoderma-induced herbicidal activity. LC-MS analysis revealed that loss of herbicidal activity of ΔHAS/ΔGAPDH was associated with an increase in the levels of amino acids, which coincided with reduced expression levels of amino-acid catabolism and anabolism related genes in HASR/GAPDHR. RNAi-mediated suppression of an oxidoreductase gene, VDN5, specifically prevented viridin-to-viridiol conversion. Additionally, vdn5 mimics ΔHAS, in terms of amino-acid metabolism gene expression and partially abolishes the herbicidal property of WT-Trichoderma. Thus, the study provides mechanistic frame-work for better utilization of Trichoderma virens for biocontrol purposes, balancing between plant growth promotion and herbicidal activity.


Assuntos
Arabidopsis , Herbicidas , Hypocrea , Trichoderma , Arabidopsis/genética , Herbicidas/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , Terpenos/metabolismo
2.
Plant Pathol J ; 32(6): 580-583, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27904466

RESUMO

The cotton leafroll dwarf virus (CLRDV) is one of the most devastating pathogens of cotton. This malady, known as cotton blue disease, is widespread in South America where it causes huge crop losses. Recently the disease has been reported from India. We noticed occurrence of cotton blue disease and chickpea stunt disease in adjoining cotton and chickpea fields and got interested in knowing if these two viral diseases have some association. By genetic studies, we have shown here that CLRDV is very close to chickpea stunt disease associated virus (CpSDaV). We were successful in transmitting the CLRDV from cotton to chickpea. Our studies indicate that CpSDaV and CLRDV in India are possibly two different strains of the same virus. These findings would be helpful in managing these serious diseases by altering the cropping patterns.

3.
Nat Prod Commun ; 11(4): 431-4, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27396184

RESUMO

The widely used biotechnologically important fungi belonging to the genus Trichoderma are rich sources of secondary metabolites. Even though the genomes of several Trichoderma spp. have been published, and data are available on the genes involved in biosynthesis of non-ribosomal peptide synthetases and polyketide synthases, no genome-wide data are available for the terpenoid biosynthesis machinery in these organisms. In the present study, we have identified the genes involved in terpene biosynthesis in the genomes of three Trichoderma spp., viz., T. virens, T. atroviride and T. reesei. While the genes involved in the condensation steps are highly conserved across the three species, these fungi differed in the number and organization of terpene cyclases. T. virens genome harbours eleven terpene cyclases, while T. atroviride harbours seven, and T. reeseisix in their genomes; seven, three and two being part of putative secondary metabolism related gene clusters.


Assuntos
Terpenos/metabolismo , Trichoderma/metabolismo , Genes Fúngicos , Trichoderma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...