Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(12): 351, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864056

RESUMO

The hardening step of micropropagation is crucial to make the in vitro raised plants mature and further enhancing their survivability in the external environment. Auxin regulates various root physiological parameters in plant systems. Therefore, the present study aimed to assess the impact of three vermicompost-derived IAA-releasing microbial strains, designated S1, S2, and S3, as biofertilizers on in vitro raised banana plantlets during primary hardening. The High-Performance Thin-Layer Chromatography (HPTLC) analysis of these strains revealed a higher IAA content for S1 and S2 than that of S3 after 144 h of incubation. In total, seven different treatments were applied to banana plantlets, and significant variations were observed in all plant growth parameters for all treatments except autoclaved cocopeat (100%) mixed with autoclaved vermicompost (100%) at a 1:1 ratio. Among these treatments, the application of S3 biofertilizer: autoclaved cocopeat (1:1), followed by S2 biofertlizer: autoclaved cocopeat (1:1), was found to be better than other treatments for root numbers per plant, root length per plant, root volume, and chlorophyll content. These findings have confirmed the beneficial effects of microbial strains on plant systems and propose a link between root improvement and bacterial auxin. Further, these strains were identified at the molecular level as Bacillus sp. As per our knowledge, this is the first report of Bacillus strains isolated from vermicompost and applied as biofertilizer along with cocopeat for the primary hardening of banana. This unique approach may be adopted to improve the quality of plants during hardening, which increases their survival under abiotic stresses.


Assuntos
Bacillus , Musa , Musa/microbiologia , Desenvolvimento Vegetal , Bactérias/genética , Ácidos Indolacéticos , Plantas
2.
World J Microbiol Biotechnol ; 38(7): 111, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35570214

RESUMO

Beejamrit is an ancient organic formulation commonly used as a seed treatment in organic and natural farming in India. This low-cost formulation is primarily a product of dairy excreta (e.g., cow dung and cow urine) and forest soil, often supplemented with limestone. Growing data suggest that dairy excreta are the potential sources of enriched microbial niche, including several plant growth-promoting bacteria capable of synthesizing plant growth regulators. However, the microbiological properties of Beejamrit and their temporal changes after different incubation periods, delineating its application in seed treatment, remain largely unexplored. Here, we aimed to analyze the decomposition rate of Beejamrit over 7-consecutive days of incubation. This study further elucidates the microbial niche and their dynamics in Beejamrit, including the plant beneficial bacteria. We have shown that the population of plant beneficial bacteria, such as the free-living nitrogen fixers (FNFs) and the phosphate solubilizers (PSBs), proliferates progressively up to 4- and 5-days of incubation, respectively (p < 0.0001). This study also reports the total indolic content of Beejamrit, including indole 3-acetic acid (IAA), which further tends to oscillate in concentration based on the incubation periods incurred during the Beejamrit preparation. Our analyses, together, establish that Beejamrit provides a dynamic, microbe-based metabolic network and may, therefore, act as a plant biostimulant to crop plants. A plant-based bioassay finally demonstrates the role of Beejamrit in the seed treatment to improve seed germination, seedling survival rate, and shoot length trait in French beans (p < 0.01). In conclusion, this study highlights, for the first time, the scientific insights of Beejamrit as a potential seed priming agent in agriculture.


Assuntos
Germinação , Desenvolvimento Vegetal , Bactérias , Plantas , Sementes/microbiologia , Microbiologia do Solo
3.
World J Microbiol Biotechnol ; 33(2): 31, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28063101

RESUMO

Bambusa balcooa is an economically important, multipurpose bamboo species, decidedly used in construction industry. Availability of natural bamboo is depleting very rapidly due to accelerated deforestation and its unrestrained use. The large number and timely supply of saplings are the need of the hour for the restoration of bamboo stands. Micropropagation, being the potent alternative for season independent rapid regeneration, is restricted in bamboo because of endophytic contamination. An in vitro attempt has been taken to overcome the endophytic contamination by using broad spectrum antibiotics as surface sterilant as well as a media component. Ampicillin sodium salt (5 mg/ml for 30 min) as a surface sterilant was found as the best treatment for high bud breaking (80%) coupled with high branching and low contamination (20%) but it was found ineffective to control the contamination during multiplication stage. Then, two endophytes were isolated and minimum inhibitory concentration was determined through antibiotic susceptibility test for successful eradication at multiplication stage. Finally, contamination free cultures were obtained when streptocycline (100 µg/ml) and gentamicin sulphate (75 µg/ml) were added into the medium. The two isolated endophytes, BB1 and BB2, were identified through 16S rDNA techniques and NCBI-BLAST algorithm with 99% sequence similarity with those of Janibacter sp. (KX423734) and Serratia marcescens strain (KX423735). To our knowledge, this is the first report for B. balcooa where antibiotics were used as surface sterilant as well as medium component, to control endophytic bacterial contaminants, followed by their identification.


Assuntos
Actinobacteria/efeitos dos fármacos , Antibacterianos/farmacologia , Bambusa/microbiologia , Endófitos/efeitos dos fármacos , Serratia marcescens/efeitos dos fármacos , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/isolamento & purificação , Bambusa/efeitos dos fármacos , Bambusa/crescimento & desenvolvimento , DNA Bacteriano/genética , DNA Ribossômico/genética , Endófitos/genética , Endófitos/crescimento & desenvolvimento , Endófitos/isolamento & purificação , Testes de Sensibilidade Microbiana , Filogenia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Serratia marcescens/genética , Serratia marcescens/crescimento & desenvolvimento , Serratia marcescens/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...