Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768926

RESUMO

Oscillation of intracellular calcium concentration is a stable phenomenon that affects cellular function throughout the lifetime of both electrically excitable and non-excitable cells. Nitric oxide, a gaseous secondary messenger and the product of nitric oxide synthase (NOS), affects intracellular calcium dynamics. Using mouse hippocampal primary cultures, we recorded the effect of NOS blockade on neuronal spontaneous calcium activity. There was a correlation between the amplitude of spontaneous calcium events and the number of action potentials (APs) (Spearman R = 0.94). There was a linear rise of DAF-FM fluorescent emission showing an increase in NO concentration with time in neurons (11.9 ± 1.0%). There is correlation between the integral of the signal from DAF-FM and the integral of the spontaneous calcium event signal from Oregon Green 488 (Spearman R = 0.58). Blockade of NOS affected the parameters of the spontaneous calcium events studied (amplitude, frequency, integral, rise slope and decay slope). NOS blockade by Nw-Nitro-L-arginine suppressed the amplitude and frequency of spontaneous calcium events. The NOS blocker 3-Bromo-7-Nitroindazole reduced the frequency but not the amplitude of spontaneous calcium activity. Blockade of the well-known regulator of NOS, calcineurin with cyclosporine A reduced the integral of calcium activity in neurons. The differences and similarities in the effects on the parameters of spontaneous calcium effects caused by different blockades of NO production help to improve understanding of how NO synthesis affects calcium dynamics in neurons.


Assuntos
Cálcio , Óxido Nítrico Sintase , Camundongos , Animais , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico , Doadores de Óxido Nítrico , Cálcio da Dieta , Hipocampo/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo
2.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012579

RESUMO

Acute lung injury (ALI) as a model of acute respiratory distress syndrome is characterized by inflammation, complex coagulation, and hematologic abnormalities which result in the formation of fibrin-platelet microthrombi in the pulmonary vessels with the rapid development of progressive respiratory dysfunction. We hypothesize that a nebulized fibrinolytic agent, non-immunogenic staphylokinase (nSta), may be useful for ALI therapy. First, the effect of the nebulized nSta (0.2 mg/kg, 1.0 mg/kg, or 2.0 mg/kg) on the coagulogram parameters was studied in healthy rats. ALI was induced in mice by nebulized administration of lipopolysaccharide (LPS) at a dose of 10 mg/kg. nSta (0.2 mg/kg, 0.4 mg/kg or 0.6 mg/kg) was nebulized 30 min, 24 h, and 48 h after LPS administration. The level of pro-inflammatory cytokines was determined in the blood on the 8th day after LPS and nSta administration. The assessment of lung damage was based on their weighing and microscopic analysis. Fibrin/fibrinogen deposition in the lungs was determined by immunohistochemistry. After nSta nebulization in healthy rats, the fibrinogen blood level as well as activated partial thromboplastin time and prothrombin time did not change. In the nebulized ALI model, the mice showed an increase in lung weight due to their edema and rising fibrin deposition. An imbalance of proinflammatory cytokines was also found. Forty percent of mice with ALI without nSta nebulization had died. Nebulized nSta at a dose of 0.2 mg/kg reduced the severity of ALI: a decrease in interstitial edema and inflammatory infiltration was noted. At a dose of 0.4 mg/kg of nebulized nSta, the animals showed no peribronchial edema and the bronchi had an open clear lumen. At a dose of 0.6 mg/kg of nebulized nSta, the manifestations of ALI were completely eliminated. A significant dose-dependent reduction of the fibrin-positive areas in the lungs of mice with ALI was established. Nebulized nSta had a normalizing effect on the proinflammatory cytokines in blood- interleukin (IL)-1α, IL-17A, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). These data showed the effectiveness of nebulized nSta and the perspectives of its clinical usage in COVID-19 patients with acute respiratory distress syndrome (ARDS).


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Modelos Animais de Doenças , Fibrina/farmacologia , Fibrinogênio/uso terapêutico , Lipopolissacarídeos/toxicidade , Pulmão , Metaloendopeptidases , Camundongos , Ratos , Síndrome do Desconforto Respiratório/tratamento farmacológico
3.
Arch Biochem Biophys ; 727: 109330, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35750097

RESUMO

Calcium is one of the most vital intracellular secondary messengers that tightly regulates a variety of cell physiology processes, especially in the brain. Using a fluorescent Ca2+-sensitive Oregon Green probe, we revealed three different amplitude distributions of spontaneous Ca2+ events (SCEs) in neurons between 15 and 26 days in vitro (DIV) culture maturation. We detected a series of amplitude events: micro amplitude SCE (microSCE) 25% increase from the baseline, intermediate amplitude SCE (interSCE) as 25-75%, and macro amplitude SCE (macroSCE) - over 75%. The SCEs were fully dependent on extracellular Ca2+ and neuronal network activity and vanished in the Ca2+-free solution, 10 mM Mg2+-block, or in the presence of voltage-gated Na+-channel blocker, tetrodotoxin. Combined patch-clamp and Ca2+-imaging techniques revealed that microSCE match single action potential (AP), interSCE - burst of 3-12 APs, and macroSCE - 'superburst' of 10+ APs. MicroSCEs were blocked by a common α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid (KA) receptor antagonist, CNQX. The γ-aminobutyric acid (GABA) A-type receptor (GABAAR) picrotoxin blockade and L-type voltage-dependent Ca2+-channel inhibitor diltiazem significantly reduced microSCE frequency. InterSCEs were inhibited by CNQX, but picrotoxin treatment significantly increased its amplitude. The N-methyl-d-aspartate (NMDA) receptor antagonist, D-APV, voltage-gated K+-channel blocker, tetraethylammonium, noticeably suppressed interSCE amplitude. We also demonstrate that macroSCEs were AMPA/KA receptor-independent.


Assuntos
Antagonistas de Aminoácidos Excitatórios , Neurônios , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Cálcio/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Picrotoxina/farmacologia , Receptores de Ácido Caínico , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
4.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408778

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is a common clinical problem, leading to significant morbidity and mortality, and no effective pharmacotherapy exists. The problem of ARDS causing mortality became more apparent during the COVID-19 pandemic. Biotherapeutic products containing multipotent mesenchymal stromal cell (MMSC) secretome may provide a new therapeutic paradigm for human healthcare due to their immunomodulating and regenerative abilities. The content and regenerative capacity of the secretome depends on cell origin and type of cultivation (two- or three-dimensional (2D/3D)). In this study, we investigated the proteomic profile of the secretome from 2D- and 3D-cultured placental MMSC and lung fibroblasts (LFBs) and the effect of inhalation of freeze-dried secretome on survival, lung inflammation, lung tissue regeneration, fibrin deposition in a lethal ALI model in mice. We found that three inhaled administrations of freeze-dried secretome from 2D- and 3D-cultured placental MMSC and LFB protected mice from death, restored the histological structure of damaged lungs, and decreased fibrin deposition. At the same time, 3D MMSC secretome exhibited a more pronounced trend in lung recovery than 2D MMSC and LFB-derived secretome in some measures. Taking together, these studies show that inhalation of cell secretome may also be considered as a potential therapy for the management of ARDS in patients suffering from severe pneumonia, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, their effectiveness requires further investigation.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Pneumonia , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/terapia , Animais , COVID-19/terapia , Técnicas de Cultura de Células , Feminino , Fibrina , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Pandemias , Placenta , Gravidez , Proteômica , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2 , Secretoma
5.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34959663

RESUMO

BACKGROUND: There is a need for better strategies to promote burn wound healing and prevent infection. The aim of our study was to develop an easy-to-use placental multipotent mesenchymal stromal cell (MMSC) secretome-based chitosan hydrogel (MSC-Ch-gel) and estimate its antimicrobial and regenerative activity in Staphylococcus aureus-infected burn wounds in rats. METHODS: Proteomic studies of the MMSC secretome revealed proteins involved in regeneration, angiogenesis, and defence responses. The MMSC secretome was collected from cultured cells and mixed with water-soluble chitosan to prepare the placental MSC-Ch-gel, which was stored in liquid phase at 4 °C. The wounds of rats with established II-IIIa-degree burns were then infected with S. aureus and externally covered with the MSC-Ch-gel. Three additional rat groups were treated with medical Vaseline oil, the antiseptic drug Miramistin®, or the drug Bepanthen® Plus. Skin wound samples were collected 4 and 8 days after burning for further microbiological and histological analysis. Blood samples were also collected for biochemical analysis. RESULTS: Application of the MSC-Ch-gel cleared the wound of microorganisms (S. aureus wasn't detected in the washings from the burned areas), decreased inflammation, enhanced re-epithelialisation, and promoted the formation of well-vascularised granulation tissue. CONCLUSIONS: MSC-Ch-gel effectively promotes infected wound healing in rats with third-degree burns. Gel preparation can be easily implemented into clinical practice.

6.
Front Neurosci ; 14: 589319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240039

RESUMO

In neuroscience, much attention is paid to intercellular interactions, in particular, to synapses. However, many researchers do not pay due attention to the contribution of intracellular contacts to the work of intercellular interactions. Nevertheless, along with synapses, intracellular contacts also have complex organization and a tremendous number of regulatory elements. Mitochondria-endoplasmic reticulum contacts (MERCs) are a specific site of interaction between the two organelles; they provide a basis for a large number of cellular functions, such as calcium homeostasis, lipid metabolism, autophagy, and apoptosis. Despite the presence of these contacts in various parts of neurons and glial cells, it is yet not known whether they fulfill the same functions. There are still many unsolved questions about the work of these intracellular contacts, and one of the most important among them is if MERCs, with their broad implication into synaptic events, can be considered the assistant to neurotransmission?

7.
Minerva Cardioangiol ; 68(6): 619-628, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059404

RESUMO

BACKGROUND: Ventricular fibrillation is an electrophysiological disorder leading to cardiac arrest that can be caused using chemicals. The 2-aminoethoxydiphenyl borate (2-apb) is a poorly understood compound that modulates store operated calcium entry and gap junctions and can provoke ventricular fibrillation. Our study aimed to investigate the effect of 2-apb on the work of an isolated rat heart and coronary vessels under normoxic conditions, as well as under conditions of hypoxia/reoxygenation, that affect intracellular calcium. METHODS: In order to accomplish this task, we used Langendorff rat heart preparation and multi-electrode registration of bioelectric activity of the heart with flexible arrays. An analysis of changes in the volume of coronary blood flow was also performed. RESULTS: Arrhythmogenic effect of 2-apb on an isolated rat heart was shown: an increase in the frequency and variability of the heart rhythm, a decrease in the electrical conductivity of the myocardium, and the appearance of ventricular fibrillation. Under hypoxic conditions, the arrhythmogenic effect of 2-apb decreased and no ventricular fibrillation was observed. In addition, 2-apb had a stabilizing effect on coronary vessels and weakened the effect of reoxygenation on the electrical activity of the heart. CONCLUSIONS: Obtained results indicate that the effect of arrhythmogenic chemicals, for example, proarrhythmic drugs that affect the myocardial [Ca2+]in, depended on the oxygen supply to the heart. The components of the store operated calcium entry and gap junctions can become promising therapeutic targets for controlling the physiological disorders of the heart and blood vessels caused or accompanied by reoxygenation.


Assuntos
Arritmias Cardíacas , Compostos de Boro , Fibrilação Ventricular , Animais , Compostos de Boro/toxicidade , Coração , Hipóxia , Ratos , Fibrilação Ventricular/induzido quimicamente
8.
Biomed Rep ; 13(5): 47, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32934819

RESUMO

The aim of the present study was to evaluate the current body of knowledge regarding tumor-associated macrophages (TAMs) and their potential use in antitumor therapy, based on their role in the pathological process of tumorigenesis. For this purpose, a critical analysis of published data and summarization of the findings available from original studies, focusing on the role of TAMs in the pathological process, and their potential therapeutic application was performed. Promising key avenues of research were identified in this field. The following issues seem the most promising and thus worth further investigation: i) The process of M1/M2 macrophage polarization, macrophage characteristics at intermediate polarization steps and their role in the tumor process; ii) determining the conditions necessary for transitions between the M1 and M2 macrophage phenotypes and the role of signals from the microenvironment in this process; iii) cause-and-effect associations between the quantity and quality of macrophages, and the prognosis and outcome of the pathological process; iv) modulation of macrophages and stimulation of their phagocytic activity with drugs; v) targeted vector-based systems for drug delivery to macrophages; and vi) targeted drug delivery systems with macrophages as carriers, thus potentially combining chemotherapy and immunotherapy.

9.
Brain Res ; 1678: 310-321, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106947

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is regarded as a potent neuroprotector and a corrector of neural network activity in stress conditions. This work aimed to investigate the effect of GDNF on primary hippocampal cultures during acute normobaric hypoxia. Hypoxia induction was performed using day 14 in vitro cultures derived from mouse embryos (E18) with the preventive addition of GDNF (1 ng/ml) to the culture medium 10 min before oxygen deprivation. An analysis of spontaneous bioelectrical activity that included defining the internal neural network structure, morphological studies, and viability tests was performed during the post-hypoxic period. This study revealed that GDNF does not influence spontaneous network activity during normoxia but protects cultures from cell death and maintains the network activity during hypoxia. GDNF created unique conditions that supported the viability of cells even in cases of cellular mitochondrial damage. GDNF partially negated the consequences of hypoxia by influencing synaptic plasticity. Intravital mRNA detection identified fewer GluR2 mRNA-positive cells, whereas GDNF preserved the number of these cells in the post-hypoxic period. Activation of the synthesis of GluR2 subunits of AMPA-receptors is one possible mechanism of the neuroprotective action of GDNF.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Hipóxia/patologia , Hipóxia/prevenção & controle , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Mamíferos , Hipocampo/química , Camundongos , Microscopia Eletrônica de Transmissão , Rede Nervosa/ultraestrutura , Neurônios/patologia , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
10.
Oxid Med Cell Longev ; 2015: 453901, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075035

RESUMO

The neuroprotective and antihypoxic effects of brain-derived neurotrophic factor (BDNF) on dissociated hippocampal cultures in a hypoxia model were investigated. These experiments demonstrate that 10 minutes of normobaric hypoxia increased the number of dead cells in primary culture, whereas a preventive application of BDNF increased the number of viable cells. Spontaneous bioelectrical and calcium activity in neural networks was analyzed using multielectrode arrays and functional intravital calcium imaging. The results indicate that BDNF affects the functional parameters of neuronal networks in dissociated hippocampal cultures over the 7-day posthypoxic period. In addition, the effects of k252a, an antagonist of tropomyosin-related kinase B (TrkB), on functional bioelectrical activity during and after acute hypoxia were investigated. It was shown that the protective effects of BDNF are associated with binding to the TrkB receptor. Finally, intravital fluorescent mRNA probes were used to study the role of NF-κB1 in the protective effects of BDNF. Our experiments revealed that BDNF application stimulates NF-κB1 mRNA synthesis in primary dissociated hippocampal cells under normal conditions but not in hypoxic state.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Hipocampo/efeitos dos fármacos , Receptor trkB/metabolismo , Animais , Carbazóis/farmacologia , Hipóxia Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Hipocampo/citologia , Hipocampo/metabolismo , Alcaloides Indólicos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...