Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38248857

RESUMO

Blood metabolomics profiling using mass spectrometry has emerged as a powerful approach for investigating non-cancer diseases and understanding their underlying metabolic alterations. Blood, as a readily accessible physiological fluid, contains a diverse repertoire of metabolites derived from various physiological systems. Mass spectrometry offers a universal and precise analytical platform for the comprehensive analysis of blood metabolites, encompassing proteins, lipids, peptides, glycans, and immunoglobulins. In this comprehensive review, we present an overview of the research landscape in mass spectrometry-based blood metabolomics profiling. While the field of metabolomics research is primarily focused on cancer, this review specifically highlights studies related to non-cancer diseases, aiming to bring attention to valuable research that often remains overshadowed. Employing natural language processing methods, we processed 507 articles to provide insights into the application of metabolomic studies for specific diseases and physiological systems. The review encompasses a wide range of non-cancer diseases, with emphasis on cardiovascular disease, reproductive disease, diabetes, inflammation, and immunodeficiency states. By analyzing blood samples, researchers gain valuable insights into the metabolic perturbations associated with these diseases, potentially leading to the identification of novel biomarkers and the development of personalized therapeutic approaches. Furthermore, we provide a comprehensive overview of various mass spectrometry approaches utilized in blood metabolomics research, including GC-MS, LC-MS, and others discussing their advantages and limitations. To enhance the scope, we propose including recent review articles supporting the applicability of GC×GC-MS for metabolomics-based studies. This addition will contribute to a more exhaustive understanding of the available analytical techniques. The Integration of mass spectrometry-based blood profiling into clinical practice holds promise for improving disease diagnosis, treatment monitoring, and patient outcomes. By unraveling the complex metabolic alterations associated with non-cancer diseases, researchers and healthcare professionals can pave the way for precision medicine and personalized therapeutic interventions. Continuous advancements in mass spectrometry technology and data analysis methods will further enhance the potential of blood metabolomics profiling in non-cancer diseases, facilitating its translation from the laboratory to routine clinical application.

2.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958508

RESUMO

There are only a few studies devoted to the comparative and simultaneous study of the mechanisms of the length-dependent regulation of atrial and ventricular contractility. Therefore, an isometric force-length protocol was applied to isolated guinea pig right atrial (RA) strips and ventricular (RV) trabeculae, with a simultaneous measurement of force (Frank-Starling mechanism) and Ca2+ transients (CaT) or transmembrane action potentials (AP). Over the entire length-range studied, the duration of isometric contraction, CaT and AP, were shorter in the RA myocardium than in the RV myocardium. The RA myocardium was stiffer than the RV myocardium. With the increasing length of the RA and RV myocardium, the amplitude and duration of isometric contraction and CaT increased, as well as the amplitude and area of the "CaT difference curves" (shown for the first time). However, the rates of the tension development and relaxation decreased. No contribution of AP duration to the heterometric regulation of isometric tension was found in either the RA or RV myocardium of the guinea pig. Changes in the degree of overlap of the contractile proteins of the guinea pig RA and RV myocardium mainly affect CaT kinetics but not AP duration.


Assuntos
Fibrilação Atrial , Cálcio , Cobaias , Animais , Cálcio/metabolismo , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Miocárdio/metabolismo , Ventrículos do Coração/metabolismo , Cálcio da Dieta/metabolismo , Contração Miocárdica/fisiologia
3.
Molecules ; 28(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005344

RESUMO

One of the emerging trends in modern analytical and bioanalytical chemistry involves the substitution of enzyme labels (such as horseradish peroxidase) with nanozymes (nanoparticles possessing enzyme-like catalytic activity). Since enzymes and nanozymes typically operate through different catalytic mechanisms, it is expected that optimal reaction conditions will also differ. The optimization of substrates for nanozymes usually focuses on determining the ideal pH and temperature. However, in some cases, even this step is overlooked, and commercial substrate formulations designed for enzymes are utilized. This paper demonstrates that not only the pH but also the composition of the substrate buffer, including the buffer species and additives, significantly impact the analytical signal generated by nanozymes. The presence of enhancers such as imidazole in commercial substrates diminishes the catalytic activity of nanozymes, which is demonstrated herein through the use of 3,3'-diaminobenzidine (DAB) and Prussian Blue as a model chromogenic substrate and nanozyme. Conversely, a simple modification to the substrate buffer greatly enhances the performance of nanozymes. Specifically, in this paper, it is demonstrated that buffers such as citrate, MES, HEPES, and TRIS, containing 1.5-2 M NaCl or NH4Cl, substantially increase DAB oxidation by Prussian Blue and yield a higher signal compared to commercial DAB formulations. The central message of this paper is that the optimization of substrate composition should be an integral step in the development of nanozyme-based assays. Herein, a step-by-step optimization of the DAB substrate composition for Prussian Blue nanozymes is presented. The optimized substrate outperforms commercial formulations in terms of efficiency. The effectiveness of the optimized DAB substrate is affirmed through its application in several commonly used immunostaining techniques, including tissue staining, Western blotting assays of immunoglobulins, and dot blot assays of antibodies against SARS-CoV-2.


Assuntos
Colorimetria , Peroxidase , Peroxidase/química , 3,3'-Diaminobenzidina , Colorimetria/métodos , Peroxidases , Corantes , Catálise
4.
Front Cardiovasc Med ; 10: 1203093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608813

RESUMO

Introduction: The left and right atria (LA, RA) work under different mechanical and metabolic environments that may cause an intrinsic inter-chamber diversity in structure and functional properties between atrial cardiomyocytes (CM) in norm and provoke their different responsiveness to pathological conditions. In this study, we assessed a LA vs. RA difference in CM contractility in paroxysmal atrial fibrillation (AF) and underlying mechanisms. Methods: We investigated the contractile function of single isolated CM from LA and RA using a 7-day acetylcholine (ACh)-CaCl2 AF model in rats. We compared auxotonic force, sarcomere length dynamics, cytosolic calcium ([Ca2+]i) transients, intracellular ROS and NO production in LA and RA CM, and analyzed the phosphorylation levels of contractile proteins and actin-myosin interaction using an in vitro motility assay. Results: AF resulted in more prominent structural and functional changes in LA myocardium, reducing sarcomere shortening amplitude, and velocity of sarcomere relengthening in mechanically non-loaded LA CM, which was associated with the increased ROS production, decreased NO production, reduced myofibrillar content, and decreased phosphorylation of cardiac myosin binding protein C and troponin I. However, in mechanically loaded CM, AF depressed the auxotonic force amplitude and kinetics in RA CM, while force characteristics were preserved in LA CM. Discussion: Thus, inter-atrial differences are increased in paroxysmal AF and affected by the mechanical load that may contribute to the maintenance and progression of AF.

5.
J Muscle Res Cell Motil ; 44(4): 299-309, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37249732

RESUMO

Pulmonary arterial hypertension (PAH) leads to changes in the pump function of the heart and causes right-sided myocardial hypertrophy and heart failure. This study was the first to compare the contractile characteristics of the multicellular myocardial preparations of the right atrium (RA) and right ventricle (RV) of male rats from the control group (CON) and the group with monocrotaline (MCT)-induced hypertrophy at the molecular and multicellular levels. In both RA and RV in MCT-treated rats, the fraction of motile filaments and the maximum sliding velocity of actin and reconstituted thin filaments over myosin decreased, and the ratio of α-/ß-myosin heavy chains (MHC) shifted towards ß-MHC. In the RA strips and RV trabeculae, the maximum shortening velocity, the extent of muscle shortening, the amplitude of isometric stress, the amount of work decreased. PAH leads to a greater drop in right atrial contractility than that of the ventricle.


Assuntos
Fibrilação Atrial , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Ratos , Masculino , Animais , Hipertensão Arterial Pulmonar/complicações , Ventrículos do Coração , Monocrotalina/toxicidade , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/complicações , Fibrilação Atrial/complicações , Hipertrofia Ventricular Direita/induzido quimicamente , Átrios do Coração , Modelos Animais de Doenças
6.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35457003

RESUMO

There is a lack of data about the contractile behavior of the right atrial myocardium in chronic pulmonary heart disease. We thoroughly characterized the contractility and Ca transient of isolated right atrial strips of healthy rats (CONT) and rats with the experimental model of monocrotaline-induced pulmonary hypertension (MCT) in steady state at different preloads (isometric force-length), during slow force response to stretch (SFR), and during post-rest potentiation after a period of absence of electrical stimulation (PRP). The preload-dependent changes in the isometric twitch and Ca transient did not differ between CONT and MCT rats while the kinetics of the twitch and Ca transient were noticeably slowed down in the MCT rats. The magnitude of SFR was significantly elevated in the MCT right atrial strips and this was accompanied by the significantly higher elevation of the Ca transient relative amplitude at the end of SFR. The slow changes in the contractility and Ca transient in the PRP protocol did not differ between CONT and MCT. In conclusion, the alterations in the contractility and Ca transient of the right atrial myocardium of monocrotaline-treated rats with pulmonary hypertension mostly concern the elevation in SFR. We hypothesize that this positive inotropic effect in the atrial myocardium may (partly) compensate the systolic deficiency of the right ventricular failing myocardium.


Assuntos
Hipertensão Pulmonar , Monocrotalina , Animais , Modelos Teóricos , Monocrotalina/efeitos adversos , Contração Miocárdica , Miocárdio , Ratos , Ratos Wistar
7.
Biochem Biophys Res Commun ; 541: 30-35, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33461065

RESUMO

Estrogen deficiency has a significant influence on the excitation-contraction coupling in the ventricular myocardium but its impact on the atrial contractile function has not been studied. We have compared the effects of estrogen deficiency on the contractility and cytosolic Ca2+ transient of single cardiomyocytes isolated from the left atrium (LA) and the left ventricle (LV) of rats subjected to ovariectomy (OVX) or sham surgery (Sham). The characteristics of actin-myosin interaction were studied in an in vitro motility assay. We found that OVX decreased the contractility of LV single cardiomyocytes but increased that of LA myocytes. The disturbance of ventricular mechanical function may be explained by the acceleration of Ca2+ transient and reduced Ca2+ sensitivity of the actin-myosin interaction. The augmentation of LA contractility may be explained by accelerated cross-bridge kinetics and increased end-diastolic sarcomere length, which may lead to elevated tension in atrial cells due to the Frank-Starling mechanism.


Assuntos
Estrogênios/deficiência , Ventrículos do Coração/citologia , Miocárdio/metabolismo , Função Ventricular , Actinas/metabolismo , Animais , Cálcio/metabolismo , Feminino , Insuficiência Cardíaca , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Miosinas/metabolismo , Ovariectomia , Fosforilação , Ratos , Sarcômeros/química , Sarcômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...