Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 11(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751953

RESUMO

While band gap and absorption coefficients are intrinsic properties of a material and determine its spectral range, response time is mainly controlled by the architecture of the device and electron/hole mobility. Further, 2D-layered materials such as transition metal dichalogenides (TMDCs) possess inherent and intriguing properties such as a layer-dependent band gap and are envisaged as alternative materials to replace conventional silicon (Si) and indium gallium arsenide (InGaAs) infrared photodetectors. The most researched 2D material is graphene with a response time between 50 and 100 ps and a responsivity of <10 mA/W across all wavelengths. Conventional Si photodiodes have a response time of about 50 ps with maximum responsivity of about 500 mA/W at 880 nm. Although the responsivity of TMDCs can reach beyond 104 A/W, response times fall short by 3-6 orders of magnitude compared to graphene, commercial Si, and InGaAs photodiodes. Slow response times limit their application in devices requiring high frequency. Here, we highlight some of the recent developments made with visible and near-infrared photodetectors based on two dimensional SnSe2 and MoS2 materials and their performance with the main emphasis on the role played by the mobility of the constituency semiconductors to response/recovery times associated with the hetero-structures.

2.
ACS Appl Mater Interfaces ; 11(6): 6184-6194, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30652845

RESUMO

In photodetection, the response time is mainly controlled by the device architecture and electron/hole mobility, while the absorption coefficient and the effective separation of the electrons/holes are the key parameters for high responsivity. Here, we report an approach toward the fast and highly responsive infrared photodetection using an n-type SnSe2 thin film on a p-Si(100) substrate keeping the overall performance of the device. The I- V characteristics of the device show a rectification ratio of ∼147 at ±5 V and enhanced optoelectronic properties under 1064 nm radiation. The responsivity is 0.12 A/W at 5 V, and the response/recovery time constants were estimated as ∼57 ± 25/34 ± 15 µs, respectively. Overall, the response times are shown to be controlled by the mobility of the constituent semiconductors of a photodiode. Further, our findings suggest that n-SnSe2 can be integrated with well-established Si technology with enhanced optoelectronic properties and also pave the way in the design of fast response photodetectors for other wavelengths as well.

3.
RSC Adv ; 9(18): 9983-9992, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35520889

RESUMO

We report detailed structural, electrical transport and IR photoresponse properties of large area VO2(M1) thin films deposited by a simple cost-effective two-step technique. Phase purity was confirmed by XRD and Raman spectroscopy studies. The high quality of the films was further established by a phase change from low temperature monoclinic phase to high temperature tetragonal rutile phase at 68 °C from temperature dependent Raman studies. An optical band gap of 0.75 eV was estimated from UV-visible spectroscopy. FTIR studies showed 60% reflectance change at λ = 7.7 µm from low reflectivity at low temperature to high reflectivity at high temperature in a transition temperature of 68 °C. Electrical characterization showed a first order transition of the films with a resistance change of four orders of magnitude and TCR of -3.3% K-1 at 30 °C. Hall-effect measurements revealed the n-type nature of VO2 thin films with room temperature Hall mobility, µ e of 0.097 cm2 V-1 s-1, conductivity, σ of 0.102 Ω-1 cm-1 and carrier concentration, n e = 5.36 × 1017 cm-3. In addition, we fabricated a high photoresponsive IR photodetector based on VO2(M1) thin films with excellent stability and reproducibility in ambient conditions using a low-cost method. The VO2(M1) photodetector exhibited high sensitivity, responsivity, quantum efficiency, detectivity and photoconductive gain of 5.18%, 1.54 mA W-1, 0.18%, 3.53 × 1010 jones and 9.99 × 103 respectively upon illumination with a 1064 nm laser at a power density of 200 mW cm-2 and 10 V bias voltage at room temperature.

4.
Sci Rep ; 7(1): 15215, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123219

RESUMO

We, for the first time, provide the experimental demonstration on the band gap engineering of layered hexagonal SnSe2 nanostructured thin films by varying the thickness. For 50 nm thick film, the band gap is ~2.04 eV similar to that of monolayer, whereas the band gap is approximately ~1.2 eV similar to that of bulk for the 1200 nm thick film. The variation of the band gap is consistent with the the theoretically predicted layer-dependent band gap of SnSe2. Interestingly, the 400-1200 nm thick films were sensitiveto 1064 nm laser iradiation and the sensitivity increases almost exponentiallly with thickness, while films with 50-140 nm thick are insensitive which is due to the fact that the band gap of thinner films is greater than the energy corresponding to 1064 nm. Over all, our results establish the possibility of engineering the band gap of SnSe2 layered structures by simply controlling the thickness of the film to absorb a wide range of electromagnetic radiation from infra-red to visible range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...