Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951378

RESUMO

Ribosomal proteins (RPs) are constituents of macromolecular machinery, ribosome that translates genetic information into proteins. Besides ribosomal functions, RPs are now getting appreciated for their 'moonlighting'/extra-ribosomal functions modulating many cellular processes. Accumulating evidence suggests that a number of RPs are involved in inflammation. Though acute inflammation is a part of the innate immune response, uncontrolled inflammation is a driving factor for several chronic inflammatory diseases. An in-depth understanding of inflammation regulation has always been valued for the better management of associated diseases. Hence, this review first outlines the common livelihood of RPs and then provides a comprehensive account of five RPs that significantly contribute to the inflammation process. Finally, we discuss the possible therapeutic uses of RPs against chronic inflammatory diseases.

2.
Langmuir ; 40(29): 15281-15292, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38989856

RESUMO

An ensemble of nanosystems can be considered to improve magnetic resonance imaging (MRI) transverse relaxivity. Herein, an interacting superparamagnetic competing structure of an isotropic-anisotropic trimagnetic hybrid nanosystem, γ-Fe2O3@δ-MnO2@NiFe2O4, is considered for MRI relaxivity exploration. The interacting superparamagnetic system reveals fascinating dynamic magnetic behavior, where flower-shaped two-dimensional flakes are decorated over nanoparticles. The hybrid nanosystem exhibits modulated shape anisotropy with spin blocking and energy barrier broadening, which help in achieving faster MR transverse relaxivity. The hierarchical architecture ensemble of the trimagnetic landscape shows effective MR transverse relaxivity with a transverse (r2)/longitudinal (r1) relaxivity of 61.5 and potential cell viability. The competing trimagnetic system with regulated activation energy is found to be the underlying reason for such signal enhancement in MRI contrast efficiency. Hence, this study displays a novel pathway correlating MR transverse relaxivity with dynamic magnetic behavior and competing landscape of hierarchical trimagnetic ensembles.

3.
Heliyon ; 10(1): e23616, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187223

RESUMO

Scrub typhus is a vector-borne infectious disease caused by Orientia tsutsugamushi and it is reportedly associated with up to 20 % of hospitalized cases of febrile illnesses. The major challenge of vaccine development is the lack of identified antigens that can induce both heterotypic and homotypic immunity including the production of antibodies, cytotoxic T lymphocyte, and helper T lymphocytes. We employed a comprehensive immunoinformatic prediction algorithm to identify immunogenic epitopes of the 56-kDa type-specific cell membrane surface antigen and surface cell antigen A of O. tsutsugamushi to select potential candidates for developing vaccines and diagnostic assays. We identified 35 linear and 29 continuous immunogenic B-cell epitopes and 51 and 27 strong-binding T-cell epitopes of major histocompatibility complex class I and class II molecules, respectively, in the conserved and variable regions of the 56-kDa type-specific surface antigen. The predicted B- and T-cell epitopes were used to develop immunogenic multi-epitope candidate vaccines and showed to elicit a broad-range of immune protection. A stable interactions between the multi-epitope vaccines and the host fibronectin protein were observed using docking and simulation methods. Molecular dynamics simulation studies demonstrated that the multi-epitope vaccine constructs and fibronectin docked models were stable during simulation time. Furthermore, the multi-epitope vaccine exhibited properties such as antigenicity, non-allergenicity and ability to induce interferon gamma production and had strong associations with their respective human leukocyte antigen alleles of world-wide population coverage. A correlation of immune simulations and the in-silico predicted immunogenic potential of multi-epitope vaccines implicate for further investigations to accelerate designing of epitope-based vaccine candidates and chimeric antigens for development of serological diagnostic assays for scrub typhus.

4.
Langmuir ; 40(3): 1793-1803, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38181379

RESUMO

The potential application of magnetic nanosystems as magnetic resonance imaging (MRI) contrast agents has been thoroughly investigated. This work seeks to attain robust MRI-contrast efficiency by designing an interacting landscape of a bimagnetic ensemble of zinc ferrite nanorods and maghemite nanoparticles, γ-Fe2O3@ZnFe2O4. Because of competing spin clusters and structural anisotropy triggered by isotropic γ-Fe2O3 and anisotropic ZnFe2O4, γ-Fe2O3@ZnFe2O4 undergoes the evolution of cluster spin-glass state as evident from the critical slowing down law. Such interacting γ-Fe2O3@ZnFe2O4 with spin flipping of 1.2 × 10-8 s and energy barrier of 8.2 × 10-14 erg reflects enhanced MRI-contrast signal. Additionally, γ-Fe2O3@ZnFe2O4 is cell-viable to noncancerous HEK 293 cell-line and shows no pro-tumorigenic activity as observed in MDA-MB-231, an extremely aggressive triple-negative breast cancer cell line. As a result, γ-Fe2O3@ZnFe2O4 is a feasible option for an MRI-contrast agent having longitudinal relaxivity, r1, of 0.46 s-1mM-1 and transverse relaxivity, r2, of 15.94 s-1mM-1, together with r2/r1 of 34.65 at 1.41 T up to a modest metal concentration of 0.1 mM. Hence, this study addresses an interacting isotropic/anisotropic framework with faster water proton decay in MR-relaxivity resulting in phantom signal amplification.

5.
Front Public Health ; 10: 956422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249255

RESUMO

Background: Home visitation has emerged as an effective model to provide high-quality care during pregnancy, childbirth, and post-natal period and improve the health outcomes of mother- new born dyad. This 3600 assessment documented the constraints faced by the community health workers (known as the Accredited Social Health Activists, ASHAs) to accomplish home visitation and deliver quality services in a poor-performing district and co-created the strategies to overcome these using a nexus planning approach. Methods: The study was conducted in the Raisen district of Madhya Pradesh, India. The grounded theory approach was applied for data collection and analysis using in-depth interviews, and focus group discussions with stakeholders representing from health system (including the ASHAs) and the community (rural population). A key group of diverse stakeholders were convened to utilize the nexus planning five domain framework (social-cultural, educational, organizational, economic, and physical) to prioritize the challenges and co-create solutions for improving the home visitation program performance and quality. The nexus framework provides a systemic lens for evaluating the success of the ASHAs home visitation program. Results: The societal (caste and economic discrimination), and personal (domestic responsibilities and cultural constraints of working in the village milieu) issues emerged as the key constraints for completing home visits. The programmatic gaps in imparting technical knowledge and skills, mentoring system, communication abilities, and unsatisfactory remuneration system were the other barriers to the credibility of the services. The nexus planning framework emphasized that each of the above factors/domains is intertwined and affects or depends on each other for home-based maternal and newborn care services delivered with quality through the ASHAs. Conclusion: The home visitation program services, quality and impact can be enhanced by addressing the social-cultural, organizational, educational, economic, and physical nexus domains with concurrent efforts for skill and confidence enhancement of the ASHAs and their credibility.


Assuntos
Agentes Comunitários de Saúde , Visita Domiciliar , Feminino , Humanos , Lactente , Recém-Nascido , Mães , Gravidez , Pesquisa Qualitativa , População Rural
6.
Langmuir ; 38(36): 11087-11098, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36041119

RESUMO

The aim of the work is to explore structure-relaxivity relationship by observing transverse relaxivity enhancement in magnetic resonance imaging (MRI) of differently organized superparamagnetic complex ensembles of zinc ferrite isotropic/anisotropic nanosystems. We observe that superparamagnetic systems show a correlation of MRI-transverse relaxivity, r2/r1, with spatial arrangement of nanoparticles, as well as magnetic easy axes and thermal-energy-dependent anisotropy energy landscape. The presence of highly random/partially aligned easy axes with enhanced anisotropy constant leads to modulation in transverse relaxation. As a result, we achieve highest contrast efficiency in compact ensemble of isotropic nanoparticles and hollow core ensemble. Indeed, core-shell ensemble with combined effect of aligned and randomly oriented easy magnetic axes shows a reduction in MRI contrast efficiency. However, we address a hypothesis for transverse contrast efficiency where we depict the correlation among MRI-transverse contrast efficiency with structural complexity of ensembles, differently arranged primary nanoparticles/magnetic easy axes, anisotropy constant, and collective magnetic behavior. In consequence, we simplify the limitation of quantum mechanical outer-sphere diffusion model of magnetic resonance relaxivity by neglecting the contribution of magnetization and introducing an anisotropy constant contribution with complex structure landscape of easy axes.


Assuntos
Nanopartículas de Magnetita , Anisotropia , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Nanopartículas de Magnetita/química
7.
Transl Oncol ; 21: 101433, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35462210

RESUMO

While the anti-inflammatory activities of Eriodictyol, a plant-derived flavonoid is well-known, reports on its anti-cancer efficacy and selective cytotoxicity in cancer cells are still emerging. However, little is known regarding its mechanism of selective anti-cancer activities. Here, we show the mechanism of selective cytotoxicity of Eriodictyol towards cancer cells compared to normal cells. Investigation reveals that Eriodictyol significantly upregulates TNFR1 expression in tumor cells (HeLa and SK-RC-45) while sparing the normal cells (HEK, NKE and WI-38), which display negligible TNFR1 expression, irrespective of the absence or presence of Eriodictyol. Further investigation of the molecular events reveal that Eriodictyol induces apoptosis through expression of the pro-apoptotic DISC components leading to activation of the caspase cascade. In addition, CRISPR-Cas9 mediated knockout of TNFR1 completely blocks apoptosis in HeLa cells in response to Eriodictyol, confirming that Eriodictyol induced cancer cell apoptosis is indeed TNFR1-dependent. Finally, in vivo data demonstrates that Eriodictyol not only impedes tumor growth and progression, but also inhibits metastasis in mice implanted with 4T1 breast cancer cells. Thus, our study has identified Eriodictyol as a compound with high selectivity towards cancer cells through TNFR1 and suggests that it can be further explored for its prospect in cancer therapeutics.

8.
PLoS One ; 16(7): e0252700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234352

RESUMO

BACKGROUND: Neonatal sepsis is a major cause of death in India, which needs hospital management but many families cannot access hospitals. The World Health Organization and the Government of India developed a guideline to manage possible serious bacterial infection (PSBI) when a referral is not feasible. We implemented this guideline to achieve high coverage of treatment of PSBI with low mortality. METHODOLOGY: The implementation research study was conducted in over 50 villages of Palwal district, Haryana during August 2017-March 2019 and covered a population of 199143. Policy dialogue with central, state and district health authorities was held before initiation of the study. A baseline assessment of the barriers in the implementation of the PSBI intervention was conducted. The intervention was implemented in the program setting. The research team collected data throughout and also co-participated in the implementation of the intervention for the first six months to identify bottlenecks in the health system and at the community level. RE-AIM framework was utilized to document implementation strategies of PSBI management guideline. Implementation strategies by the district technical support unit (TSU) included: (i) empower mothers and families through social mobilization to improve care-seeking of sick young infants 0-59 days of age, (ii) build capacity through training and build confidence through technical support of health staff at primary health centers (PHC), community health centers (CHC) and sub-centers to manage young infants with PSBI signs and (iii) improve performance of accredited social health activists (ASHAs). FINDINGS: A total of 370 young infants with signs of PSBI were identified and managed in 5270 live births. Treatment coverage was 70% assuming that 10% of live births would have PSBI within the first two months of life. Mothers identified 87.6% (324/370) of PSBI cases. PHCs and CHCs became functional and managed 150 (40%) sick young infants with PSBI. Twenty four young infants (7-59days) who had only fast breathing were treated with oral amoxicillin without a referral. Referral to a hospital was refused by 126 (84%); 119 had clinical severe infection (CSI), one 0-6 days old had fast breathing and six had critical illness (CI). Of 119 CSI cases managed on outpatient injection gentamicin and oral amoxicillin, 116 (96.7%) recovered, 55 (45.8%) received all seven gentamicin injections and only one died. All 7-59 day old infants with fast breathing recovered, 23 on outpatient oral amoxicillin treatment; and 19 (79%) received all doses. Of 65 infants managed at either district or tertiary hospital, two (3.1%) died, rest recovered. Private providers managed 155 (41.9%) PSBI cases, all except one recovered, but sub-classification and treatment were unknown. Sub-centers could not be activated to manage PSBI. CONCLUSION: The study demonstrated resolution of implementation bottlenecks with existing resources, activated PHCs and CHCs to manage CSI and fast breathers (7-59 day old) on an outpatient basis with low mortality when a referral was not feasible. TSU was instrumental in these achievements. We established the effectiveness of oral amoxicillin alone in 7-59 days old fast breathers and recommend a review of the current national policy.


Assuntos
Infecções Bacterianas/tratamento farmacológico , Encaminhamento e Consulta , Assistência Ambulatorial , Amoxicilina/uso terapêutico , Antibacterianos/uso terapêutico , Gentamicinas/uso terapêutico , Humanos , Índia , Lactente , Mortalidade Infantil , Recém-Nascido , Aceitação pelo Paciente de Cuidados de Saúde
9.
Expert Rev Proteomics ; 18(6): 463-481, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34110968

RESUMO

Background: The snake venom nerve growth factor (NGF)-induced signal transduction mechanism has never been explored.Research design and methods: Homology modeling and molecular dynamic studies of the interaction between Russell's viper venom NGF (RVV-NGFa) and mammalian tropomyosin-receptor kinase A (TrkA) was done by computational analysis. Transcriptomic and quantitative tandem mass spectrometry analyses determined the expression of intracellular genes and proteins, respectively, in RVV-NGFa-treated PC-12 neuronal cells. Small synthetic inhibitors of the signal transduction pathways were used to validate the major signaling cascades of neuritogenesis by RVV-NGFa.Results: A comparative computational analysis predicted the binding of RVV-NGFa, mouse 2.5S-NGF (conventional neurotrophin), and Nn-α-elapitoxin-1 (non-conventional neurotrophin) to different domains of the TrkA receptor in PC-12 cells. The transcriptomic and quantitative proteomic analyses in unison showed differential expressions of common and unique genes and intracellular proteins, respectively, in RVV-NGFa-treated cells compared to control (untreated) mouse 2.5S-NGF and Nn-α-elapitoxin-1-treated PC-12 cells. The RVV-NGFa primarily triggered the mitogen-activated protein kinase-1 (MAPK1) signaling pathway for inducing neuritogenesis; however, 36 pathways of neuritogenesis were uniquely expressed in RVV-NGFa-treated PC-12 cells compared to mouse 2.5S NGF or Nn-α-elapitoxin-1 treated cells.Conclusion: The common and unique intracellular signaling pathways of neuritogenesis by classical and non-classical neurotrophins were identified.


Assuntos
Neoplasias das Glândulas Suprarrenais , Daboia , Feocromocitoma , Animais , Camundongos , Fator de Crescimento Neural , Proteômica , Ratos , Transcriptoma , Venenos de Víboras
10.
Nutr Cancer ; 73(11-12): 2477-2490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034216

RESUMO

Medicinal plants offer enormous possibilities in the quest of novel bioactive formulation for cancer therapy. Here, we studied the anticancer efficacy of the extract of edible tuber Amorphophallus paeoniifolius (Dennst.) (APTE) against estrogen positive MCF-7 and triple negative MDA-MB-231 breast cancer cell lines. APTE showed significant cytotoxic activity in both MCF-7 and MDA-MB-231 cells in a dose and time-dependent manner. The effect of APTE on metastatic parameters e.g., migration, adhesion, and invasion in MCF-7 and MDA-MB-231 cells were studied using wound healing, collagen adhesion, and transwell matrigel invasion assays, respectively. APTE significantly reduced migration in both the cell lines, however, its effect on the inhibition of adhesion and invasion was higher in MDA-MB-231 cells. Annexin V-Cy3 staining suggested that APTE induced apoptosis in these cells which was further validated by attenuation of antiapoptotic Bcl-2 and induction of pro-apoptotic Bax, Caspase-7 expression and cleavage of PARP. High resolution-liquid chromatography mass spectroscopy analysis with bioactive ethyl acetate and butanol fractions of APTE detected several compounds with anticancer activities. Overall, the study described the mechanism of anticancer activity of a common edible tuber A. paeoniifolius and contributes to growing list of naturally occurring chemo-preventive strategies.


Assuntos
Amorphophallus , Neoplasias da Mama , Amorphophallus/química , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Extratos Vegetais/química , Extratos Vegetais/farmacologia
11.
Inflamm Res ; 69(11): 1143-1156, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32852592

RESUMO

OBJECTIVE: IL-6-induced STAT3 activation is associated with various chronic inflammatory diseases. In this study, we investigated the anti-STAT3 mechanism of the dietary polyphenol, biochanin A (BCA), in IL-6-treated macrophages. METHODS: The effect of BCA on STAT3 and p38 MAPK was analyzed by immunoblot. The localization of both these transcription factors was determined by immunofluorescence and fractionation studies. The impact on DNA-binding activity of STAT3 was studied by luciferase assay. To understand which of the isoforms of p38 MAPK was responsible for BCA-mediated regulation of STAT3, overexpression of the proteins, site-directed mutagenesis, pull-down assays and computational analysis were performed. Finally, adhesion-migration assays and semi-quantitative PCR were employed to understand the biological effects of BCA-mediated regulation of STAT3. RESULTS: BCA prevented STAT3 phosphorylation (Tyr705) and increased p38 MAPK phosphorylation (Thr180/Tyr182) in IL-6-stimulated differentiated macrophages. This opposing modulatory effect of BCA was not observed in cells treated with other stress-inducing stimuli that activate p38 MAPK. BCA abrogated IL-6-induced nuclear translocation of phospho-STAT3 and its transcriptional activity, while increasing the cellular abundance of phospho-p38 MAPK. BCA-induced phosphorylation of p38δ, but not α, ß, or γ was responsible for impeding IL-6-induced STAT3 phosphorylation. Interestingly, interaction with phospho-p38δ masked the Tyr705 residue of STAT3, preventing its phosphorylation. BCA significantly reduced STAT3-dependent expression of icam-1 and mcp-1 diminishing IL-6-mediated monocyte adhesion and migration. CONCLUSION: This differential regulation of STAT3 and p38 MAPK in macrophages establishes a novel anti-inflammatory mechanism of BCA which could be important for the prevention of IL-6-associated chronic inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Genisteína/farmacologia , Interleucina-6/farmacologia , Macrófagos/efeitos dos fármacos , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/fisiologia , Macrófagos/fisiologia , Proteína Quinase 13 Ativada por Mitógeno/genética , Fosforilação/efeitos dos fármacos , Células THP-1
12.
J Colloid Interface Sci ; 580: 561-572, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32711206

RESUMO

Nanogels have potential for encapsulating cancer therapeutics, yet their susceptibility to physiological degradation and lack of cellular specificity hinder their use as effective oral delivery vehicles. Herein, we engineered novel albumin-core with folic acid functionalized hyperbranched amylopectin shell-type nanogels, prepared through a two-step reaction and loaded with curcumin while the proteinaceous core was undergoing thermal gelation. The nanogels had a mean hydrodynamic diameter of ca. 90 nm and ζ-potential of ca. -24 mV. Encapsulation of curcumin within the nanogels was restored, up to ca. 0.05 mg mL-1, beyond which, a gradual increase in size and a decrease in ζ-potential was observed. The core-shell structures were resilient to in vitro physiological oral-gastrointestinal digestion owing to a liquid crystalline B- and V-type polymorphism in the polysaccharide shell, the latter being driven by the shell functionalization with folic acid. Additionally, these biocompatible nanogels restored stability of the encapsulated curcumin and exhibited augmented cellular uptake and retention specifically in folate receptor-positive HT29 human colon adenocarcinoma cells, inducing early-stage apoptosis. Novel insights from this study represent a promising platform for rational designing of future oral delivery systems that can surmount physiological barriers for delivering cancer therapeutics to colon cancer cells with improved stability and specificity.


Assuntos
Neoplasias do Colo , Curcumina , Albuminas , Amilopectina , Neoplasias do Colo/tratamento farmacológico , Curcumina/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Ácido Fólico , Humanos , Nanogéis
13.
Dalton Trans ; 49(24): 8282-8297, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32510543

RESUMO

Octahedral copper(ii) complexes of the type [Cu(trien)(diimine)](ClO4)2 (1-4), where trien is triethylenetetramine and diimine is 2,2'-bipyridine (1), 1,10-phenanthroline (2), 5,6-dimethyl-1,10-phenanthroline (3), and 3,4,7,8-tetramethyl-1,10-phenanthroline (4), have been isolated. Single crystal X-ray structures of 1 and 2 reveal that the coordination geometry around Cu(ii) is tetragonally distorted octahedral. The stereochemical fluxionality of the complexes illustrates the observed trend in CuII/CuI redox potentials and DNA binding affinity (Kb: 1, 0.030 ± 0.002 < 2, 0.66 ± 0.01 < 3, 1.63 ± 0.10 < 4, 2.27± 0.20 × 105 M-1), determined using absorption spectral titration. All complexes effect oxidative DNA cleavage more efficiently than hydrolytic DNA cleavage. The bpy complex 1 with stereochemical fluxionality lower than its phen analogue 2 shows a higher cytotoxicity against both A549 lung (IC50, 3.3 µM) and MCF-7 human breast (IC50, 3.9 µM) cancer cells, and induces the generation of the highest amount of ROS in A549 cells. Complex 3 with a higher stereochemical fluxionality and higher ligand hydrophobicity exhibits a higher DNA binding and cleavage ability and higher cytotoxicity (IC50, 2.1 µM) towards MCF-7 cells. Complex 4 with a still higher stereochemical fluxionality displays the highest DNA binding and cleavage ability but a lower cytotoxicity towards both A549 and MCF-7 cell lines due to its tendency to form a five-coordinated complex with the uncoordinated amine group. Annexin V.Cy3 staining and immunoblot analysis demonstrate the mechanism of cell death caused by 1 and 2. The finding of the up-regulation of the pro-apoptotic Bax protein and down-regulation of PARP protein in western blot analysis confirms the induction of apoptosis by these complexes.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Cobre/farmacologia , Clivagem do DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Iminas/química , Iminas/farmacologia , Ligantes , Células MCF-7 , Estrutura Molecular , Oxirredução , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Trientina/química , Trientina/farmacologia , Células Tumorais Cultivadas
14.
Biochimie ; 176: 31-44, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32585227

RESUMO

Nerve growth factor (NGF) is a minor and neglected component of snake venom. Present study describes the purification and characterization of a NGF isoform (RVV-NGFa) from Indian Russell's viper venom (RVV). RVV-NGFa showed a protonated molecular ion [MH+] at m/z 17388.725 Da. The RVV-NGFa induced neuritogenesis in PC-12 cells but did not show cytotoxicity in mammalian cells, hemolytic activity, platelet modulation, and interference in blood coagulation system which are the characteristic pharmacological properties of RVV. By ELISA and immunofluorescence microplate reader assay, the RVV-NGFa showed appreciable binding to TrkA receptor expressed in breast cancer MDA-MB-231 and MCF-7 cells; nevertheless, pre-incubation of cells with anti-TrkA (and not TrkB or TrkC) or anti-p75NTR antibody significantly decreased (p < 0.05) this binding. The RVV-NGFa demonstrated insignificant binding with non-cancerous cells (HEK-293, L6) lacking TrkA receptor. The binding of RVV-NGFa to TrkA receptor of breast cancer cells resulted in internalization of ligand (RVV-NGFa)-receptor (TrkA) complex to cell cytoplasm in a time-dependent manner. The spectrofluorometric study demonstrated an interaction between RVV-NGFa and cytosolic domain of the purified TrkA receptor. The fluorescence (FITC)-tagged RVV-NGFa depicted a strong fluorescence signal that was observed under a fluorescence microscope and determined by fluorescence microplate reader assay post binding to breast cancer cells; but no fluorescence signal was detected after incubating FITC-RVV-NGFa with non-cancerous L6 and HEK-293 cells. The clinical application of FITC/fluorescence nanoparticle tagged RVV-NGFa for the ex vivo and in vivo diagnosis of breast cancer is highly promising.


Assuntos
Neoplasias da Mama , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Nanopartículas , Proteínas de Neoplasias/biossíntese , Fator de Crescimento Neural , Imagem Óptica , Receptor trkA/biossíntese , Venenos de Víboras , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/enzimologia , Feminino , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacologia , Células HEK293 , Humanos , Células MCF-7 , Fator de Crescimento Neural/química , Fator de Crescimento Neural/farmacologia , Células PC12 , Ratos , Coloração e Rotulagem , Venenos de Víboras/química , Venenos de Víboras/farmacologia
15.
FEBS J ; 287(17): 3794-3813, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32383535

RESUMO

Monocyte infiltration to the site of pathogenic invasion is critical for inflammatory response and host defence. However, this process demands precise regulation as uncontrolled migration of monocytes to the site delays resolution of inflammation and ultimately promotes chronic inflammation. C-C motif chemokine ligand 2 (CCL2) plays a key role in monocyte migration, and hence, its expression should be tightly regulated. Here, we report a post-transcriptional regulation of CCL2 involving the large ribosomal subunit protein L22 (RPL22) in LPS-activated, differentiated THP-1 cells. Early events following LPS treatment include transcriptional upregulation of RPL22 and its nuclear accumulation. The protein binds to the first 20 nt sequence of the 5'UTR of ccl2 mRNA. Simultaneous nuclear translocation of up-frameshift-1 protein and its interaction with RPL22 results in cytoplasmic degradation of the ccl2 mRNA at a later stage. Removal of RPL22 from cells results in increased expression of CCL2 in response to LPS causing disproportionate migration of monocytes. We propose that post-transcriptional regulation of CCL2 by RPL22 fine-tunes monocyte infiltration during a pathogenic insult and maintains homeostasis of the immune response critical to resolution of inflammation. DATABASES: Microarray data are available in NCBI GEO database (Accession No GSE126525).


Assuntos
Quimiocina CCL2/biossíntese , Inflamação/genética , Lipopolissacarídeos/toxicidade , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/fisiologia , Proteínas Ribossômicas/fisiologia , Regiões 5' não Traduzidas , Transporte Ativo do Núcleo Celular , Sequência de Bases , Sistemas CRISPR-Cas , Movimento Celular , Quimiocina CCL2/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Células MCF-7 , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Conformação Proteica , Mapeamento de Interação de Proteínas , RNA Helicases/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/deficiência , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Células THP-1 , Transativadores/metabolismo
16.
Int J Biol Macromol ; 160: 602-611, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470580

RESUMO

Cysteine-Rich Secretory Proteins (CRISP) are widespread in snake venoms and known to target ion channels. More recently, CRISPs have been shown to mediate inflammatory responses. Involvement of potential receptor in CRISP-induced inflammatory reactions, however, remains unknown. A CRISP protein named as Nk-CRISP, was isolated from the venom of Naja kaouthia. The molecular mass of the purified protein was found to be ~25 kDa and the primary sequence was determined by MALDI TOF-TOF. The involvement of this protein in proinflammatory effects were evaluated in THP-1 macrophage-like cells. Nk-CRISP treated cells induced up-regulation of several inflammatory marker genes in dose dependent manner. Toll like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex are known to play crucial role in recognition of damage/pathogen-associated molecular patterns and activation of innate immune response. Therefore, we hypothesized that snake venom CRISP could also modulate the innate immune response via TLR4-MD2 complex. In-silico molecular docking study of cobra CRISP with TLR4-MD2 receptor complex reveals CRISP engages its cysteine-rich domain (CRD) to interact with complex. Inhibition of TLR4 signalling pathway using CLI-095 confirmed the role of TLR4 in Nk-CRISP induced inflammatory responses. Collectively, these findings imply that TLR4 initiates proinflammatory signalling following recognition of cobra CRISP and alteration of TLR4 receptor might improve or control CRISP induced inflammation.


Assuntos
Venenos Elapídicos/farmacologia , Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Glicoproteínas de Membrana/farmacologia , Venenos de Serpentes/farmacologia , Regulação para Cima/fisiologia , Animais , Linhagem Celular , Cisteína/metabolismo , Elapidae/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação/genética , Antígeno 96 de Linfócito/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Receptor 4 Toll-Like/metabolismo
17.
J Neurochem ; 155(6): 612-637, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33460153

RESUMO

This is the first report showing unique neuritogenesis potency of Indian Cobra N. naja venom long-chain α-neurotoxin (Nn-α-elapitoxin-1) exhibiting no sequence similarity to conventional nerve growth factor, by high-affinity binding to its tyrosine kinase A (TrkA) receptor of rat pheochromocytoma (PC-12) cells without requiring low-affinity receptor p75NTR. The binding residues between Nn-α-elapitoxin-1 and mammalian TrkA receptor are predicted by in silico analysis. This binding results in a time-dependent internalization of TrkA receptor into the cytoplasm of PC-12 cells. The transcriptomic analysis has demonstrated the differential expression of 445 genes; 38 and 32 genes are up-regulated and down-regulated, respectively in the PC-12 cells post-treatment with Nn-α-elapitoxin-1. Global proteomic analysis in concurrence with transcriptomic data has also demonstrated that in addition to expression of a large number of common intracellular proteins in the control and Nn-α-elapitoxin-1-treated PC-12 cells, the latter cells also showed the expression of uniquely up-regulated and down-regulated intracellular proteins involved in diverse cellular functions. Altogether, the data from transcriptomics, proteomics, and inhibition of downstream signaling pathways by specific inhibitors, and the immunoblot analysis of major regulators of signaling pathways of neuritogenesis unambiguously demonstrate that, similar to mouse 2.5S-nerve growth factor, the activation of mitogen activated protein kinase/extracellular signal-regulated kinase is the major signaling pathway for neuritogenesis by Nn-α-elapitoxin-1. Nonetheless, fibroblast growth factor signaling and heterotrimeric G-protein signaling pathways were found to be uniquely expressed in Nn-α-elapitoxin-1-treated PC-12 cells and not in mouse 2.5S-nerve growth factor -treated cells. The TrkA binding region of Nn-α-elapitoxin-1 may be developed as a peptide-based drug prototype for the treatment of major central neurodegenerative diseases. Read the Editorial Highlight for this article on page 599.


Assuntos
Venenos Elapídicos/metabolismo , Venenos Elapídicos/farmacologia , Proteômica/métodos , Receptor trkA/metabolismo , Transcriptoma/fisiologia , Sequência de Aminoácidos , Animais , Venenos Elapídicos/genética , Células HEK293 , Humanos , Células MCF-7 , Naja , Células PC12 , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Ratos , Receptor trkA/genética , Transcriptoma/efeitos dos fármacos
18.
Sci Rep ; 9(1): 14493, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601896

RESUMO

Medicinal plant-based therapies can be important for treatment of cancer owing to high efficiency, low cost and minimal side effects. Here, we report the anti-cancer efficacy of Ricinus communis L. fruit extract (RCFE) using estrogen positive MCF-7 and highly aggressive, triple negative MDA-MB-231 breast cancer cells. RCFE induced cytotoxicity in these cells in dose and time-dependent manner. It also demonstrated robust anti-metastatic activity as it significantly inhibited migration, adhesion, invasion and expression of matrix metalloproteinases (MMPs) 2 and 9 in both cell lines. Further, flow cytometry analysis suggested RCFE-mediated induction of apoptosis in these cells. This was supported by attenuation of anti-apoptotic Bcl-2, induction of pro-apoptotic Bax and caspase-7 expressions as well as PARP cleavage upon RCFE treatment. RCFE (0.5 mg/Kg body weight) treatment led to significant reduction in tumor volume in 4T1 syngeneic mouse model. HPLC and ESI-MS analysis of active ethyl acetate fraction of RCFE detected four compounds, Ricinine, p-Coumaric acid, Epigallocatechin and Ricinoleic acid. Individually these compounds showed cytotoxic and migration-inhibitory activities. Overall, this study for the first time demonstrates the anti-cancer efficacy of the fruit extract of common castor plant which can be proposed as a potent candidate for the treatment of breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ricinus/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Caspase 7/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Feminino , Frutas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-bcl-2/genética
19.
Bioresour Technol ; 266: 472-481, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29990763

RESUMO

Chromium-rich tannery sludge (TS) is a hazardous industrial waste. Although vermicomposting can be an effective remediation pathway; but, the unique waste degrading efficiency of Eudrillus eugeniae is least explored. The present work showcases an efficient earthworm-mediated protocol for TS sanitization deploying E. eugeniae. Changes in pH, TOC (%), nutrients (NPK), metals (Cr, Cd etc.) and microbial diversity were monitored in various E. eugeniae mediated TS based vermibed. Total N, P, and K availability increased by 2-5 folds upon vermicomposting with 3-4 folds reduction in C/N ratio. Moreover, substantial removal of Cr (89%), Cd (88%), and Zn (79%) was recorded in the substrate. Bioaccumulation of these metals in the gut significantly reduced the pollution load in the finished products. The corresponding augmentation of microbial density and low respiratory CO2 release from the vermibeds substantiated the environmental proficiency of vermitechnology.


Assuntos
Cromo/isolamento & purificação , Compostagem , Resíduos Industriais , Oligoquetos , Animais , Poluição Ambiental , Esgotos , Solo , Curtume
20.
Water Sci Technol ; 77(3-4): 638-646, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29431708

RESUMO

Biochar obtained through the pyrolysis of Pongamia glabra seed cover (PGSC) at 550 °C with a heating rate of 40 °C/min was characterized and its ability to adsorb the dyes Methylene blue (MB) and Rhodamine B (RB) from aqueous solutions was investigated. The effect of pH, temperature and initial concentration of the dyes on adsorption behavior were investigated. The equilibrium sorption data were analyzed by using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) isotherms. Equilibrium data were well fitted for D-R isotherm in case of MB and Langmuir isotherm in case of RB dyes. The kinetics of dye adsorption on PGSC biochar was well described by applying pseudo-second-order rate equations. The surface of adsorbent before and after the removal of dyes was characterized by using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. The study suggested that PGSC biochar could be used as a highly efficient adsorbent for the removal of synthetic dyes.


Assuntos
Carvão Vegetal/química , Corantes/química , Azul de Metileno/química , Pongamia , Rodaminas/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Sementes , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...