Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 610-611: 1239-1250, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851144

RESUMO

Arsenic (As) uptake by plants is largely influenced by the presence of microbial consortia and their interactions with As. In the coastal region of Bengal deltaic plain of Eastern India, the As-contaminated groundwater is frequently used for irrigation purposes resulting in an elevated level of soil As in agricultural lands. The health hazards associated with As necessitates development of cost-effective remediation strategies to reclaim contaminated agricultural lands. Among the available technologies developed in recent times, bioremediation using bacteria has been found to be the most propitious. In this study, two As-resistant halophilic bacterial strains Kocuria flava AB402 and Bacillus vietnamensis AB403 were isolated, identified and characterized from mangrove rhizosphere of Sundarban. The isolates, AB402 and AB403, could tolerate 35mM and 20mM of arsenite, respectively. The effect of As on the exopolysaccharide (EPS) synthesis, biofilm formation, and root association was evaluated for both the bacterial strains. Arsenic adsorption on the cell surfaces and intracellular accumulation in both the bacterial strains were promising under culture conditions. Moreover, both the strains when used as inoculum, not only promoted the growth of rice seedlings but also decreased As uptake and accumulation in plants.


Assuntos
Arsênio/metabolismo , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Rizosfera , Poluentes Químicos da Água/metabolismo , Áreas Alagadas , Bactérias/isolamento & purificação , Índia , Consórcios Microbianos , Plantas Tolerantes a Sal
2.
World J Microbiol Biotechnol ; 31(5): 717-27, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690843

RESUMO

Haloferax mediterranei has potential for economical industrial-scale production of polyhydroxyalkanoate (PHA) as it can utilize cheap carbon sources, has capacity for nonsterile cultivation and allows simple product recovery. Molasses-based Indian distilleries are converting themselves to cereal-based distilleries. Waste stillage (14 l) of rice-based ethanol industry was used for the production of PHA by H. mediterranei in the simple plug-flow reactor configuration of the activated sludge process. Cells utilized stillage and accumulated 63 ± 3 % PHA of dry cell weight and produced 13.12 ± 0.05 g PHA/l. The product yield coefficient was 0.27 while 0.14 g/l h volumetric productivity was reached. Simultaneous lowering of 5-day biochemical oxygen demand and chemical oxygen demand values of stillage by 82 % was attained. The biopolymer was characterized as poly-3-(hydroxybutyrate-co-17.9 mol%-hydroxyvalerate) (PHBV). Directional properties of decanoic acid jointly with temperature-dependent water solubility in decanoic acid were employed for two-step desalination of the spent stillage medium in a cylindrical baffled-tank with an immersed heater and a stirrer holding axial and radial impellers. 99.3 % of the medium salts were recovered and re-used for PHA production. The cost of PHBV was estimated as US$2.05/kg when the annual production was simulated as 1890 tons. Desalination contributed maximally to the overall cost. Technology and cost-analysis demonstrate that PHA production integrated with ethanol manufacture is feasible in India. This study could be the basis for construction of a pilot plant.


Assuntos
Biotecnologia/economia , Biotecnologia/métodos , Haloferax mediterranei/genética , Haloferax mediterranei/metabolismo , Resíduos Industriais , Oryza/metabolismo , Poliésteres/metabolismo , Etanol/metabolismo , Índia
3.
Extremophiles ; 18(2): 463-70, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24442255

RESUMO

Haloferax mediterranei holds promise for competitive industrial-scale production of polyhydroxyalkanoate (PHA) because cheap carbon sources can be used thus lowering production costs. Although high salt concentration in production medium permits a non-sterile, low-cost process, salt disposal after process completion is a problem as current environmental standards do not allow total dissolved solids (TDS) above 2000 mg/l in discharge water. As the first objective of this work, the waste product of rice-based ethanol industry, stillage, was used for the production of PHA by H. mediterranei in shake flasks. Utilization of raw stillage led to 71 ± 2% (of dry cell weight) PHA accumulation and 16.42 ± 0.02 g/l PHA production. The product yield coefficient was 0.35 while 0.17 g/l h volumetric productivity was attained. Simultaneous reduction of BOD5 and COD values of stillage by 83% was accomplished. The PHA was isolated by osmotic lysis of cells, purification by sodium dodecyl sulfate and organic solvents. The biopolymer was identified as poly-3-(hydroxybutyrate-co-15.4 mol%-hydroxyvalerate) (PHBV). This first report on utilization of rice-based ethanol stillage for PHBV production by H. mediterranei is currently the most cost effective. As the second objective, directional properties of decanoic acid together with temperature dependence of water solubility in decanoic acid were applied for two-stage desalination of the spent stillage medium. We report for the first time, recovery and re-use of 96% of the medium salts for PHA production thus removing the major bottleneck in the potential application of H. mediterranei for industrial production of PHBV. Final discharge water had TDS content of 670 mg/l.


Assuntos
Biotecnologia/métodos , Etanol/metabolismo , Haloferax mediterranei/metabolismo , Oryza/química , Poliésteres/metabolismo , Fermentação , Haloferax mediterranei/crescimento & desenvolvimento , Poliésteres/química , Sais/metabolismo
4.
AMB Express ; 2(1): 34, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22776040

RESUMO

Vinasse, a highly polluting waste of the ethanol industry was utilized for the production of polyhydroxyalkanoate (PHA) by the extremely halophilic archaeon, Haloferax mediterranei in shake-flasks. Following pre-treatment through adsorption on activated carbon, 25%-50% (v/v) pre-treated vinasse was utilized leading to 70% maximum accumulation of PHA. Maximum PHA concentration of 19.7 g/l, product yield coefficient (based on total carbohydrates) of 0.87 and 0.21 g/l h volumetric productivity were achieved. Concomitant lowering of BOD5 of pre-treated vinasse by at least 78% and COD by at least 80% was attained at the end of this process. The PHA was recovered by osmotic lysis of the cells and purification by sodium hypochlorite and organic solvents. Through UV-vis spectroscopy, gas chromatography, differential scanning calorimetry and nuclear magnetic resonance spectroscopy, the PHA was identified as poly-3-(hydroxybutyrate-co-hydroxyvalerate). The 3-hydroxyvalerate content was 12.36 mol % (utilizing 25% pre-treated vinasse) and 14.09 mol % (utilizing 50% pre-treated vinasse). High salt concentration in the medium allowed this process without sterile conditions and thus reduction in costs of sterilization can be envisaged. Activated charcoal pre-treatment of vinasse is economical than competing processes such as ultrafiltration of whey, extrusion and enzymatic treatment of rice and corn starch. Without impacting sugar prices, this process can easily be integrated into a distillery that has fermentation equipment and trained personnel. High PHA content, productivity, zero-cost carbon source, low-cost isolation of a high-purity product and potential integration into ethanol manufacturing unit with concomitant wastewater treatment should merit further development of this process to higher scales.

5.
Folia Microbiol (Praha) ; 57(1): 71-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22258750

RESUMO

Vinasse, a recalcitrant waste of the ethanol industry was employed for the production of polyhydroxyalkanoate (PHA) by the extremely halophilic archaeon, Haloarcula marismortui in shake flasks. The PHA was recovered by osmotic lysis of the cells and subsequent purification by sodium hypochlorite and organic solvents. Through UV-vis spectroscopy, differential scanning calorimetry, Fourier transform infrared, and nuclear magnetic resonance spectroscopy, the PHA was found to have characteristics very similar to that of the standard polyhydroxybutyrate (PHB) from Sigma. Inhibitory effect of polyphenols contained in vinasse was assessed by a quick and reliable cup-plate agar-diffusion method. Raw vinasse (10%) was utilized leading to accumulation of 23% PHA (of cell dry weight) and following an efficacious pre-treatment process through adsorption on activated carbon, 100% pre-treated vinasse could be utilized leading to 30% accumulation of PHB by H. marismortui. Maximum specific growth rate, specific production rate, and volumetric productivity attained using 10% raw vinasse were comparable to that obtained using a previously reported nutrient deficient medium (NDM), while the values with 100% pre-treated vinasse were higher than that determined using NDM medium. This is the first report of polyhydroxybutyrate production by a halophilic microorganism utilizing vinasse.


Assuntos
Haloarcula marismortui/metabolismo , Resíduos Industriais/análise , Poli-Hidroxialcanoatos/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea , Haloarcula marismortui/genética , Haloarcula marismortui/crescimento & desenvolvimento , Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...